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ABSTRACT

Reader-writer locks (rwlocks) aim to maximize paral-

lelism among readers, but many existing rwlocks either

cause readers to contend, or significantly extend writer

latency, or both. Further, some scalable rwlocks can-

not cope with OS semantics like sleeping inside criti-

cal sections, preemption and conditional wait. Though

truly scalable rwlocks exist, some of them cannot handle

preemption, sleeping inside critical sections, or other im-

portant functions required inside OS kernels. This paper

describes a new rwlock called the passive reader-writer

lock (prwlock) that provides scalable read-side perfor-

mance as well as small writer latency for TSO architec-

tures. The key of prwlock is a version-based consensus

protocol between multiple non-communicating readers

and a pending writer. Prwlock leverages bounded stale-

ness of memory consistency to avoid atomic instructions

and memory barriers in readers’ common paths, and uses

message-passing (e.g., IPI) for straggling readers so that

writer lock acquisition latency can be bounded. Evalu-

ation on a 64-core machine shows that prwlock signifi-

cantly boosts the performance of the Linux virtual mem-

ory subsystem, a concurrent hashtable and an in-memory

database.

1 INTRODUCTION

Reader-writer locking is an important synchronization

primitive that allows multiple threads with read accesses

to a shared object when there is no writer, and blocks all

readers when there is an inflight writer [13]. While ide-

ally rwlock should provide scalable performance when

there are infrequent writers, it is widely recognized

that traditional centralized rwlocks have poor scalabil-

ity [9, 25, 10]. For example, it is explicitly recommended

to not use rwlocks unless readers hold their locks for a

sufficiently long time [9].

While there have been a number of efforts to to im-

prove the scalability of rwlocks, prior approaches either

require memory barriers and atomic instructions in read-

ers [22, 18], or significantly extend writer latency [5],

or both [12, 2]. Further, many prior designs cannot

cope with OS semantics like sleeping inside critical sec-

tion, preemption and supporting condition synchroniza-

tion (e.g., wait/signal) [12, 2]. Hence, researchers some-

times relax semantic guarantees by allowing readers to

see stale data (i.e., RCU [21]). While RCU has been

widely used in Linux kernel for some relatively simple

data structures, it, however, would require non-trivial ef-

fort for some complex kernel data structures and may be

incompatible with some existing kernel designs [10, 11].

Hence, there are still thousands of usages or rwlocks in-

side Linux kernel [20].

This paper describes the prwlock, a scalable rwlock

design for read-mostly synchronization for TSO (Total

Store Ordering) architectures. Like prior designs such as

brlock [12, 2], instead of letting readers actively maintain

status regarding inflight readers, prwlock decentralizes

such information to each reader and only makes a con-

sensus among readers when a writer explicitly enquires.

By leveraging the ordered store property of TSO archi-

tectures, such as x86 and x86-64, Prwlock achieves truly

scalable reader performance. On TSO, it not only re-

quires no atomic instructions or memory barriers on the

common path, but it also limits writer latency when there

are concurrent readers.

The key of prwlock is a version-based consensus pro-

tocol between multiple non-communicating readers and

a pending writer. A writer advances the lock version and

waits other readers to see this version to ensure that they

have left their read-side critical sections. Unlike prior de-

signs such as brlocks, this design is based on our obser-

vation that even without explicit memory barriers, most

readers are still able to see a most-recent update of the

lock version from the writer within a small number of

cycles. We call this property bounded staleness. For

straggling readers not seeing and reporting the version

update, prwlock uses a message-based mechanism based

on inter-processor interrupts (IPIs) to explicitly achieve

consensus. Upon receiving the message, a reader will re-

port to the writer whether it has left the critical section.

As currently message passing among cores using IPIs is

not prohibitively high [4] and only very few straggling

readers require message-based consensus, a writer only

needs to wait shortly to proceed.

As a reader might sleep in the read-side critical sec-

tion, it may not be able to receive messages from the



writer. Hence, a sleeping reader might infinitely delay

a writer. To address this issue, prwlock falls back to a

shared counter to count sleeping readers. As sleeping

in read-side critical sections is usually rare, the counter

is rarely used and contention on the shared counter will

not be a performance bottleneck even if there are a small

number of sleeping readers.

Prwlock is built with a parallel wakeup mechanism to

improve performance when there are multiple sleeping

readers waiting for an outstanding writer. As traditional

wakeup mechanisms (like Linux) usually use a shared

queue for multiple sleeping readers, a writer needs to

wake up multiple readers sequentially, which becomes

a scalability bottleneck with the increasing number of

readers. Based on the observation that multiple read-

ers can be woken up in parallel with no priority viola-

tion in many cases, prwlock introduces a parallel wakeup

mechanism such that each reader is woken up by the core

where it slept from.

We have implemented prwlock as a kernel mechanism

for Linux, which compromises around 300 lines of code

(LoC). To further benefit user-level code, we also created

a user-level prwlock library (comprising about 500 LoC)

and added it to a user-level RCU library (about 100 LoC

changes). Prwlock can be used in the complex Linux vir-

tual memory system (which currently uses rwlock), with

only around 30 LoC changes. The implementation is sta-

ble enough and has passed the Linux Test Project [1]. We

have also applied prwlock by substituting for a rwlock in

the Kyoto Cabinet database [17].

Performance evaluation on a 64-core AMD machine

shows that prwlock has extremely good performance

scalability for read-mostly workloads and still good per-

formance when there are quite a few writers. The per-

formance speedup of prwlock over stock Linux is 2.85X,

1.55X and 1.20X for three benchmarks on 64 cores and

prwlock performs closely to a recent effort in using RCU

to scale Linux virtual memory [10]. Evaluation using

micro-benchmarks and the in-memory database shows

that prwlock consistently outperforms rwlock in Linux

(by 7.37X for the Kyoto Cabinet database).

2 BACKGROUND AND RELATED WORK

2.1 Reader/Writer Lock

The reader/writer problem was described by Courtois

et al. [13] and has been intensively studied afterwards.

However, most prior rwlocks require sharing states

among readers and thus may result in poor critical sec-

tion efficiency on multicore. Hence, there have been in-

tense efforts to improve rwlocks. Table 1 shows a com-

parative study of different designs, using a set of criteria

related to performance and functionality. The first three

rows list the criteria critical to reader performance, in-

cluding memory barriers, atomic instructions and com-
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No memory barrier in read X X X X

No atomic instruction in read X X X X X

No comm. among readers X X X X X X

Sleep inside critical section X X X X X X X

Condition wait X X X X X -

Writer preference X X X X X X X -

Reader preference X X -

Short writer latency w/ small #thread X X X X * -

Unchanged rwlock semantic X X X X X X X

*The writer latency of Percpu-rwlock is extremely long in most cases

Table 1: A comparison of synchronization primitives.

munication among readers. The next four rows depict

whether each design can support sleeping inside critical

section (which also implies preemption) and condition

wait (e.g., wait until a specific event such as queue is

not empty), and whether the lock is writer or reader pref-

erence. The last two rows indicate whether the writer

in each design has short writer latency when there are a

small number of threads, and whether the design retains

the original semantics of rwlock.

Big-reader Lock (brlock): The key design of brlock

is trading write throughput for read throughput. There

are two implementations of brlock: 1) requiring each

thread to obtain a private mutex to acquire the lock in

read mode and to obtain all private mutexes to acquire the

lock in write mode (brlock1); 2) using an array of reader

flags shared by readers and writer (brlock2). However,

brlock1 requires heavyweight operations for both reader

and writer sections, as the cost of acquiring a mutex is

still non-trivial and the cost for the writer is high for a

relatively large number of cores (i.e., readers).

Brlock2, like prwlock, uses per-core reader status and

forces writers to check each reader’s status, and thus

avoids atomic instructions in reader side. However, it

still requires memory barriers inside inside readers’ com-

mon paths. Further, both do not support sleeping inside

read-side critical sections as there is no centralized writer

condition to sleep on and wake up. Finally, they are vul-

nerable to deadlock when a thread is preempted and mi-

grated to another core. As a result, brlocks are most often

used with preemption disabled.

Prwlock can be viewed as a type of brlock. However,

it uses a version-based consensus protocol instead of a

single flag to avoid memory barriers in readers’ common

paths and to shorten writer latency. Further, by lever-

aging a hybrid design, prwlock can cope with complex

semantics like sleeping and preemption, making it viable

to be used in complex systems like virtual memory.

C-SNZI: Lev et al. [18] use scalable nonzero indi-

cator (SNZI) [16] to implement rwlocks. The key idea

is instead of knowing exactly how many readers are in

progress, the writer only needs to know whether there



are any inflight readers. This, however, still requires ac-

tively maintaining reader status in a tree and thus may

have scalability issues under a relatively large number of

cores [8] due to the shared tree among readers.

Cohort Lock: Irina et al. leverage the lock cohort-

ing [15] technique to implement several NUMA-friendly

rwlocks, in which writers tend to pass the lock to another

writer within a NUMA node. While writers benefit from

better NUMA locality, its readers are implemented using

per-node shared counters and thus still suffer from cache

contention and atomic instructions. Prwlock is orthog-

onal to this design and can be plugged into it as a read

indicator without memory barriers in reader side.

Percpu-rwlock: Linux community is redesigning a

new rwlock, called percpu rwlock [5]. Although, like

prwlock, it avoids unnecessary atomic instructions and

memory barriers, its writer requires RCU-based quies-

cence detection and can only be granted after at least one

grace period, where all cores have done a mode/context

switch. Hence, according to our evaluation (section 6), it

performs poorly when there are a few writers, and thus

can only be used in the case of having extremely rare

writers.

Read-Mostly Lock: From version 7.0, the FreeBSD

kernel includes a new rwlock named reader-mostly lock

(rmlock). Its readers enqueue special tracker structures

into per-cpu queues. A writer lock is acquired by in-

structing all cores to move local tracker structures to a

centralized queue via IPI, then waiting for all the cor-

responding readers to exit. Like prwlock, it eliminates

memory barriers in reader fast paths. Yet, its reader fast

path is much longer compared to prwlock, resulting in

inferior reader throughput. Moreover, as IPIs need al-

ways to be broadcasted to all cores, and ongoing readers

may contented on the shard queue, its writer lock acquisi-

tion is heavyweight (section 6.2.4). In contrast, prwlock

leverages bounded staleness of memory consistency to

avoid IPIs in the common case.

2.2 Read-Copy Update

RCU increases concurrency by relaxing the semantics of

locking. Writers are still serialized using a mutex lock,

but readers can proceed without any lock. As a result,

readers may see stale data. RCU delays freeing mem-

ory until there is no reader referencing to the object, by

using scheduler-based or epoch-based quiescence detec-

tion that leverage context or mode switches. In contrast,

the quiescence detection (or consensus) mechanism in

prwlock does not rely on context or mode switches and

is thus faster due to its proactive nature.

RCU’s relaxed semantics essentially break the all-or-

nothing atomicity in reading and writing a shared object.

Hence, it also places several constraints on the data struc-

tures, including single-pointer update and readers can

only observe a pointer once (i.e., non-repeatable read).

This constrains data structure design and complicates

programming, since programmers must handle races and

stale data and cannot always rely on cross-data-structure

invariants. For example, a recent effort in applying RCU

to page fault handling shows that several subtle races

need to be handled manually [10], which make it very

complex and resource-intensive [11]. In contrast, though

prwlock can degrade scalability by preventing readers

from proceeding concurrently with a single writer, it still

preserves the clear semantics of rwlocks. Hence, it is

trivial to completely integrate it into complex subsys-

tems, such as address space management.

2.3 Prwlock’s Position

As prwlock strives to achieve scalable reader perfor-

mance with low reader-side latency, it is designed with

a simple yet fast reader fast path, which eliminates the

need of reader-shared state and even memory barriers.

Yet by leveraging bounded staleness for common cases

and IPIs for rare cases, its writer latency is still bounded,

especially when readers are frequent.

Prwlock targets the territory of RCU where extremely

low reader latency is preferred. Compared to RCU, it

trades obstruction-free reader access for a much stronger

and clearer semantic and much shorter writer latency.

Hence, it can be used to improve performance with trivial

effort for cases where RCU is hard to apply.

3 DESIGN OF PRWLOCK

3.1 Design Rationale

The essential design goal of reader-writer lock (rwlock)

is that readers should proceed concurrently, and thus

should not share anything with each other. Hence, a

scalable rwlock design should require no shared state

among readers and no explicit or implicit memory barri-

ers when there are no writers pending. However, typical

rwlocks rely on atomic instructions to coordinate readers

and writers. On many processors, an atomic instruction

implies a memory barrier, which prevents reordering of

memory operations across critical section boundary. In

this way, readers are guaranteed to see the newest version

of data written by the last writer. However, such mem-

ory barriers are unnecessary when no writer is present, as

there are no memory ordering dependency among read-

ers. Such unnecessary memory barriers may cause sig-

nificant overhead for short reader critical sections.

Message passing is not prohibitively expensive:

Commodity multicore processors resemble distributed

systems [4] in that each core has its own memory hier-

archy. Each core communicates with others using mes-

sage passing in essence, but hardware designers add an

abstraction (i.e., cache coherence) to emulate a shared

memory interface. Such an abstraction usually comes



IPI Latency (Cycles) StdDev

AMD 64Core (Opteron 6274 * 4) 1316.3 171.4

Intel 40Core (Xeon E7-4850 *4) 1447.3 205.8

Table 2: IPI latency in different machines

at a cost: due to serialization of coherence messages,

sharing contended cache lines is usually costly (up to

4,000 cycles for a cache line read on a 48-core ma-

chine [6, 7]) and sometimes the cost significantly ex-

ceeds explicit message passing like inter-processor inter-

rupts (IPIs). Table 2 illustrates the pairwise IPI latency

on 2 recent large SMP systems, which is 1,316 and 1,447

cycles accordingly. This latency is low enough to be used

in rwlocks, whose writer latency usually exceeds several

tens of thousands of cycles.

Further, delivering multiple IPIs to different cores can

be parallelized so that the cost of parallel IPI is “indistin-

guishable” from point-to-point interrupt [23]. This may

be because point-to-point cache line movement may in-

volve multiple cores depending on the cache line state,

while an IPI is a simple point-to-point message.

Bounded staleness without memory barriers: In an

rwlock, a writer needs to achieve consensus among all its

readers to acquire the lock. Hence, a writer must let all

readers see its current status in order to proceed. Typi-

cal rwlocks either use an explicit memory barrier or wait

for a barrier [5] to make sure the version updates in the

reader/writer are visible to each other in order. However,

we argue that these are too pessimistic in either requiring

costly memory barriers that limit read-side scalability or

in significantly extending the writer latency (e.g., waiting

for a grace period).
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Figure 1: Cumulative percentage of stale readers

We observe that in commodity processors such as

x86(-64), multiple memory updates can usually be vis-

ible to other cores in a very short time. We use a micro-

benchmark to repeatedly write a memory location and

read the location on another core after a random delay.

We then collect the intervals of readers that see the stale

value. Figure 1 shows the cumulative percentage of stale

readers along with time; most readers can see the writer’s

update in a very short time (i.e., less than 400 cycles).

This is because a processor will actively flush its store

buffer due to its limited size. It is reasonable to simply

wait a small amount of time until a reader sees the up-

dated version for the common case, while using a slightly

heavyweight mechanism to guarantee correctness.

Memory barrier not essential for mutual exclusion:

To reduce processor pipeline stalls caused by memory

accesses or other time-consuming operations, modern

processors execute instructions out of order and incor-

porate a store buffer to allow the processor to continually

execute after write cache misses. This leads to weaker

memory consistency. To achieve correct mutual exclu-

sion, expensive synchronization mechanisms like mem-

ory barriers are often used to serialize the pipeline and

flush the store buffer.. This may cause notable perfor-

mance overhead for short critical sections.

Attiya et al. proved that it is impossible to build an al-

gorithm that satisfies mutual exclusion, is deadlock-free,

and avoids both atomic instructions and memory barri-

ers (which avoid read-after-write anomalies) in all exe-

cutions on TSO machines [3]. Although prwlock readers

never contain explicit memory barriers, and thus might

appear to violate this “law of order”, prwlock uses IPIs

to serialize reader execution with respect to writers, and

IPI handling has the same effect as a memory barrier.

3.2 Basic Design

Consensus using bounded staleness: Prwlock intro-

duces a 64-bit version variable (ver) to the lock structure.

Each writer increases the version and waits until all read-

ers see this version. As shown in Figure 2, ver creates a

series of happens-before dependencies between readers

and writers. A writer can only proceed after all readers

have seen its new version. This ensures correct rwlock

semantic on a machine with total-store order (TSO) con-

sistency since a certain memory store can be visible only

after all previous memory operations are visible.
Writer

lock(writer);

ver++;

for_each (id) {

while(status[id] < ver);

}

Reader

while (writer != FREE) {

status[my_id] = ver;

}

Figure 2: Simple reader-writer lock with version report

However, there are still several issues with such an ap-

proach. First, a writer may never be able to enter the

write-side critical section if a supposed reader never en-

ters the read-side critical section again. Second, a reader

may migrate from one core to another core so that the

departing core may not be updated. Hence, such an ap-

proach may lead to arbitrarily lengthy latency or even

starvation in the write side.

Handling straggling readers: To address the above

issues, prwlock introduces a message-based consensus

protocol to let the writer actively send consensus requests

to readers when necessary. The design is motivated by

the relatively small cost for message passing in contem-

porary processors. Hence, prwlock uses IPIs to request

straggling readers to immediately report their status.



This design solves the straggling reader problem.

However, if a reader is allowed to sleep in a read-side

critical section, a sleeping reader may miss the consen-

sus request so that a writer may be blocked infinitely.

Supporting sleeping readers: To address the sleep-

ing reader issue, prwlock uses a hybrid design by com-

bining the above mechanism with traditional counter-

based rwlocks. Prwlock tracks two types of readers: pas-

sive and active ones. A reader starts as a passive one

and does not synchronize with others, and thus requires

no memory barriers. A passive reader will be converted

into an active one before sleeping. A shared counter is

increased during this conversion. The counter is later

decreased after an active reader released its lock. Like

traditional rwlocks, the writer uses this counter to decide

if there is any active reader.

As sleeping in reader-side critical section is rare,

prwlock enjoys good performance in the common case,

yet still preserves correctness in a rare case where there

are sleeping readers.

3.3 Prwlock Algorithms

Figure 3 and Figure 4 show a skeleton of the read-side

and write-side algorithms of prwlock. For exposition

simplicity, we assume that there is only one lock and pre-

emption is disabled within these functions so that they

can use per-cpu states safely.

Read-side algorithm: Passive readers are tracked

distributively by a per-core reader status structure (st),

which remembers the newest seen version and the pas-

sive status of a prwlock on each core. A reader should

first set its status to PASSIVE before checking the writer

lock, or there would be a time window at which the

reader has already seen that the writer lock is free but has

not yet acquired the reader lock. If the consensus mes-

sages (e.g., IPI) were delivered in this time window, the

writer could also successfully acquire the lock and enter

the critical section, which would violate the semantic of

rwlock. If the reader found that this lock is writer locked,

it should set its status back to FREE, wait until the writer

unlocks and try again (line 4-8).

Depending on the expected writer duration, prwlock

could either choose to spin on the writer status, or put the

current thread to sleep. In the latter case, reader perfor-

mance largely depends on the sleep/wakeup mechanism

(section 4).

If a reader is holding a lock in passive mode while

being scheduled out, the lock should be converted into

an active one by increasing the active counter (Schedule-

Out). To unlock a reader lock, one just needs to check

whether the lock is held in passive mode and unlock it

accordingly (ReadUnlock).

Hence, no atomic instructions/memory barriers are

necessary in reader common paths on TSO architectures.

Moreover, readers do not communicate with each other

as long as they remain PASSIVE, thus guaranteeing per-

fect reader scalability and low reader latency.

Write-side algorithm: Writer lock acquisition can be

divided into two phases. A writer first locks the writer

mutex and increases the version to enter phase 1 (line 6-

20). Then it checks all online cores in the current domain

to see if the core has already seen the latest version. If

so, it means that reader is aware of the writer’s intention,

and will not acquire reader lock until the writer releases

the lock. For cores not seeing the newest version, the

writer sends an IPI and asks for its status. Upon receiv-

ing an IPI, an unlocked reader will report to the writer

by updating its local version (Report). A locked reader

will report later after it leaves the read-side critical sec-

tion or falls asleep. After all cores have reported, the

consensus is done among all passive readers. The writer

then enters phase 2 (line 21-23). In this phase, the writer

simply waits until all active readers exit. For a writer-

preference lock, a writer can directly pass the lock to a

pending writer, without achieving a consensus again (line

1-2 in WriteUnlock and line 2-4 in WriteLock).

Function ReadLock(lock)

1 st← PerCorePtr(lock.rstatus, CoreID);

2 st.reader← PASSIVE;

3 while lock.writer 6= FREE do

4 st.reader← FREE;

5 st.version← lock.version;

6 WaitUntil(lock.writer == FREE);

7 st← PerCorePtr(lock.rstatus, CoreID);

8 st.reader← PASSIVE;

9 /* Barrier needed here on non-TSO architecture */;

Function ReadUnlock(lock)

1 st← PerCorePtr(lock.rstatus, CoreID);

2 if st.reader = PASSIVE then

3 st.reader← FREE;

4 else

5 AtomicDec(lock.active);

6 /* Barrier needed here on non-TSO architecture */;

7 st.version← lock.version;

Function ScheduleOut(lock)

1 st← PerCorePtr(lock.rstatus, CoreID);

2 if st.reader = PASSIVE then

3 AtomicInc(lock.active);

4 st.reader← FREE;

5 st.version← lock.version;

Figure 3: Pseudocode of reader algorithms

Example: The right part of Figure 5 shows the state

machine for prwlock in the reader side. A reader in pas-

sive mode may switch to the active mode if the reader

goes to sleep. It cannot be directly switched back to pas-

sive mode until the reader releases the lock. The follow-

ing acquisition of the lock will be in passive mode again.

The left part of Figure 5 shows an example execution



Function WriteLock(lock)

1 lastState← Lock(lock.writer);

2 if lastState = PASS then

3 return;

4 /* Lock passed from another writer */

5 newVersion← AtomicInc(lock.version);

6 coresWait← /0;

7 for ID ∈ AllCores do

8 if Online(lock.domain, ID) ∧ ID 6= CoreID then

9 if PerCorePtr(lock.rstatus, CoreID).version 6=
newVersion then

10 AskForReport(ID);

11 Add(ID, coresWait);

12 for ID ∈ coresWait do

13 while PerCorePtr(lock.rstatus, CoreID).version 6=
newVersion do

14 Relax();

15 while lock.active 6= 0 do

16 Schedule();

Function WriteUnlock(lock)

1 if SomeoneWaiting(lock.writer) then

2 Unlock(lock.writer, PASS);

3 else

4 Unlock(lock.writer, FREE);

Function Report(lock)

1 st← PerCorePtr(lock.rstatus, CoreID);

2 if st.reader 6= PASSIVE then

3 st.version← lock.version;

Figure 4: Pseudocode of writer algorithms

Core#1 reader1

Core#2

reader3

reader2

Core#3

reader4

reader3

Core#4 reader4

TimeRunning

Sleep

reader3

reader4

Active 
Reader

Rare case

Common
case

sleep

Passive 
Reader

wakeup
/sleep

unlock

lock

unlock

Unlock

phase1 phase2

3

1
2

4

5

1

2

3

4
5

Writer Starts
Passive readers 

finish

Sleeping readers 
finish

Figure 5: An example execution of readers (left) and the state

machine of reader (right). Writer is not shown here.

of readers and how the consensus is done. Before a writer

starts to acquire the lock, reader2 has finished its read

critical section, while reader3 sleeps in its read critical

section due to waiting for a certain event. Reader1 and

reader4 have just started their read critical sections but

have not finished yet.

In phase 1, there is a writer trying to acquire the lock

in write mode, which will increase the lock version and

block all upcoming readers. It will send IPIs to current

active readers that have not seen the newest lock version.

If reader2 in core2 has done a context switch and another

thread is running right now, no IPI is required for core2.

Reader4 in core4 may go to sleep to wait for a certain

event, which will switch to be an active reader. No IPI

is required for core4 as there is no reader in core4 at that

time. At the end of phase1, all passive readers have left

the critical sections. Thus, in phase 2, the writer waits all

active readers to finish their execution and finally the lock

can be granted in write mode. For a writer-preference

prwlock, the writer can directly pass the lock to next

writer, which can avoid unnecessary consensus among

readers for consecutive writers.

Correctness on TSO architecture: The main differ-

ence between rwlocks and other weaker synchronization

primitives is that rwlocks enface a strong visibility guar-

antee between readers and writers. This is guaranteed in

prwlock with the help of TSO consistency model.

Once a reader sees an FREE prwlock, we can be sure

that: 1) That FREE was set by the immediate previous

writer, as writers will always ensure all reader see its

LOCKED status before continuing; 2) As memory writes

become visible in order under TSO architectures, up-

dates made by the previous writer should also be visible

to that reader. The same thing goes with earlier writers;

3) A writer must wait until all readers to see it, so no fur-

ther writers can enter critical section before this reader

exits. Thus prwlock ensures a consistent view of shared

states.

These three properties together guarantee that a reader

should always see the newest consistent version of shared

data protected by prwlock. Moreover, as all readers ex-

plicitly report the newest version during writer lock ac-

quisition, writers are also guaranteed to see all the up-

dates (if any) made by readers to other data structures.

On non-TSO architectures, two additional memory

barriers are required in reader algorithm as marked in

Figure 3. The first one ensures that readers can see the

newest version of shared data after acquiring the lock

in the fast path. The second one makes readers’ mem-

ory updates visible to the writer before releasing reader

locks.

3.4 OS Kernel Incorporation

There are several issues in incorporating prwlock to an

OS kernel. First, the scope of a prwlock could be ei-

ther global or process-wide and there may be multiple

prwlocks in each scope. Each prwlock could be shared

by multiple tasks. To reduce messages between readers

and writers, prwlock uses the lock domain abstraction to

group a set of related prwlocks that can do consensus

together. A domain tracks CPU cores that are currently

executing tasks related to a prwlock. Currently, a domain

could be process-wide or global. We now describe how

prwlock uses the domain abstraction:

Domain Online/Offline: It is possible that the scope



for a set of prwlocks may be switched off during OS ex-

ecution. For example, for a set of locks protecting the

address space structure for a process, the structure may

be switched off during an address space switch. In such

cases, prwlock uses the domain abstraction to avoid un-

necessary consensus messages. A domain maintains a

mapping from cores to its online/offline status. Only

CPU cores within an active domain will necessitate the

sending of messages. Figure 6 shows how to dynami-

cally adjust the domain. The algorithm is simple as the

consensus protocol can tolerant inaccurate domains.

When a domain is about to be online on a core, it sim-

ply sets the mapping and then performs a memory barrier

(e.g., mfence). As the writer always sets its status before

checking domains, it is guaranteed that either a writer

could see the newly online core, or incoming readers on

that core can see the writer is acquiring a lock. In either

case, the rwlock semantic is maintained. To correctly

make a domain offline from a core, a memory barrier is

also needed before changing the domain to ensure that

all previous operations are visible to other cores before

offline.

Currently, for domains that correspond to processes,

prwlock makes domains online/offline before and after

context switches. However, it is possible to make a do-

main offline at any time if readers are expected to be

infrequent afterward. When outside a domain, readers

must acquire all prwlocks in the slower ACTIVE state.

We choose to leave the choice to lock users as they may

have more insight on the workload.

Function DomainOnline(dom)

1 coreSt← PerCorePtr(dom.cores, CoreID);

2 coreSt.online = TRUE;

3 MemoryBarrier();

Function DomainOffline(dom)

1 coreSt← PerCorePtr(dom.cores, CoreID);

2 MemoryBarrier();

3 coreSt.online = FALSE;

Figure 6: Domain management algorithms

Task Online/Offline: A task (e.g., a thread) may be

context switched to other tasks and a task may also be mi-

grated from one core to another core. prwlock uses task

online/offline to handle such operations. When a task

is about to be switched out while holding a prwlock in

PASSIVE mode, it will change its lock status to be AC-

TIVE and increase the active reader counter if it previ-

ously holds a prwlock in passive read mode. This makes

sure that a writer will wait until this task is scheduled

again to leave its critical section to proceed. A task needs

to do nothing when it is scheduled to be online again.

Downgrade/Upgrade: Typical operating systems

usually support downgrading an rwlock from write mode

to read mode and upgrading from read mode to write

mode. Prwlock similarly supports lock downgrading

by setting the current task to be in read mode and then

releasing the lock in write mode. Unlike traditional

rwlocks, upgrading a prwlock from read mode to write

mode may be more costly in a rare case when the up-

grading reader is the only reader, due to the lack of ex-

act information regarding the number of readers. To up-

grade a lock from read to write mode, prwlock tries to

acquire the lock in write mode in the read-side critical

section, but counts one less readers (excluding the up-

grading reader itself) when acquiring the lock.

3.5 User-level Support

While it is straightforward to integrate prwlock in the

kernel, there are several challenges to implementing it in

user space. The major obstacle is that we cannot disable

preemption during lock acquisition at user space. That is

to say, we can no longer use any per-core data structure,

which makes the algorithm in Figure 3 impossible.

To solve this problem, prwlock instead relies on some

kernel support. The idea behind is simple: when it is

necessary to perform any operation on per-core state,

prwlock enters kernel and lets kernel handle it.

Instead of using a per-core data structure to main-

tain passive reader status, we introduce a per-thread data

structure in user space. Each thread should register an

instance of it to the kernel before performing lock opera-

tions, since there is only one thread running on each core

at any time. Such per-thread data structures resemble a

per-core data structure used in the kernel algorithm.

For performance considerations, the reader critical

paths should be entirely in user space, or the syscall over-

head would ruin prwlock’s advantage of short latency.

As a user application may be preempted at any time,

our reader lock may experience several TOCTTOU prob-

lems. Recall that in prwlock a passive lock is maintained

in per-core status while active locks are maintained in the

shared counter; checking and changing the passive lock

mode should be done atomically.

For example, line 2-3 of ReadUnlock algorithm in Fig-

ure 7 check if a reader is a passive one, and if so, release

the passive lock by setting status to FREE. If the thread

is preempted between line 2 and line 3, the lock might

be converted into an active lock and the active count is

increased. When it is later scheduled, the active count

will not be decreased since the decision has already been

made before. As a result, the rwlock becomes imbal-

anced and a writer can never acquire the lock again.

To overcome this problem, we add a preemption detec-

tion field into the per-thread data structure. As is shown

in Figure 7, the reader first sets the status to PASSIVE

and checks if it has been preempted while locking pas-

sively. If so, it decreases the active counter since the lock

is now an active lock.



Function ReadUnlock(lock) for user-level prwlock

1 st← PerThreadPtr(lock.rstatus);

2 st.reader← FREE;

3 if st.preempted then

4 AtomicDec(lock.active);

5 st.preempted← FALSE;

6 st.version← lock.version;

Function ScheduleOut(lock)

1 st← PerThreadPtr(lock.rstatus);

2 if st.reader = PASSIVE then

3 AtomicInc(lock.active);

4 st.preempted← TRUE;

5 st.reader← FREE;

6 st.version← lock.version;

Figure 7: Pseudocode of unlock algorithm with preemption de-

tection

For the write-side algorithm, since it is not possible

to send IPIs in user space, almost all writers should en-

ter kernel to acquire the lock. Fortunately, mode switch

cost between kernel and user space (around 300 cycles)

is typically negligible compared to writer lock acquisi-

tion time (usually more than 10,000 cycles).

3.6 Performance Analysis

Memory barrier: In the common path of read-side crit-

ical section, prwlock requires no memory barrier when

there is no outstanding writer. The only memory bar-

rier required is when a CPU core is about to leave a

lock domain, e.g., switch to another task and make cur-

rent lock domain offline or online. However, domain

online/offline operations are rare in typical execution.

Hence, prwlock enjoys good performance scalability in

common cases.

Writer cost: It appears that using IPIs may signif-

icantly increase the cost of writes, due to the IPI cost,

possible mode switches and disturbed reader execution.

However, the cost of IPIs and mode switches are small

and usually in the scale of several hundreds to one thou-

sand cycles. Further, as a writer usually needs to wait

for a while until all readers have left the critical section,

such costs can be mostly hidden. Though there may be

a few cold cache misses due to disturbing reader execu-

tion, such misses on uncontended cache lines would be

much smaller than the contention on shared states be-

tween readers and writers in traditional rwlocks.

In contrast to traditional rwlocks, the more readers are

currently executing in the read-side critical section, the

faster that a write can finish the consensus and get the

lock in write mode (section 6.2.4). This is because read-

ers will likely see the writer, and thus report immedi-

ately. Such a feature fits well with the common usage of

rwlocks (more readers than writers).

Space overhead: Since prwlock is essentially a dis-

tributed rwlock, it needs O(n) space for a lock instance.

More specifically, current implementation needs 12 bytes

(8 for version and 4 for reader status) per core per lock

in order to maximize performance. It is also possible to

pack a 7 bit version and a 1 bit status into one byte to save

space. Another several bytes are needed to store writer

status, whose exact size depends on the specific writer

synchronization mechanism used. Further, an additional

1 byte per core is needed to store domain online status to

support the lock domain abstraction.

By using the Linux kernel’s per-cpu storage mecha-

nism, a lock’s per-cpu status could be packed into the

same cache line as other per-cpu status words. Compared

with other scalable rwlock algorithms (e.g. brlock, SNZI

rwlock, read-mostly lock), prwlock imposes similar or

lower space overhead.

Memory consistency model requirement: As

prwlock relies on a series of happened-before relation-

ship of memory operations, it requires that memory store

operations are executed and become visible to others in

issuing order (TSO consistency). Fortunately, this as-

sumption holds for many commodity processor architec-

tures like x86(64), SPARC and zSeries.

4 DECENTRALIZED PARALLEL WAKEUP

Issues with centralized sequential wakeup:

Sleep/wakeup is a common OS mechanism that al-

lows a task to temporarily sleep to wait until a certain

event happens (e.g., an I/O event). Operating systems

such as Linux, FreeBSD and Solaris use a shared queue

to hold all waiting tasks. It is usually the responsibility

of the signaling task to wake up all waiting tasks. To do

this, the signaling task first dequeues the task from the

shared task queue, and then does something to prepare

waking up the task. Next, the scheduler chooses a core

for the task and inserts the task to the percpu runqueue.

Finally, the scheduler sends a rescheduling IPI to the

target core so that the awakened task may get a chance

to be scheduled. The kernel will repeat sending IPIs

until all awakened tasks have been rescheduled.

There are several issues with such a centralized, se-

quential wakeup mechanism. First, the shared waiting

queue may become a bottleneck as multiple cores try-

ing to sleep may contend on the queue. Hence, our first

step involves using a lock-free wakeup queue so that the

lock contention can be mitigated. However, this only

marginally improves performance.

Our further investigation uncovers that the main per-

formance scalability issue comes from the cascading

wakeup phenomenon, as shown in Figure 8. When a

writer leaves its write-side critical section, it needs to

wake up all readers waiting for it. As there are multi-

ple readers sleeping for the writer, the writer wakes up

all readers sequentially. Hence, the waiting time grows
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Figure 8: Issue with centralized, sequential wakeup (left) and

how decentralized parallel wakeup solve this problem (right).
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Figure 9: Key data structure and state transition graph of de-

centralized parallel wakeup in each core.

linearly with the number of readers.

Decentralized parallel wakeup: To speed up this

process, prwlock distributes the duty of waking up tasks

among cores. In general, this would risk priority inver-

sion, but all prwlock readers always have equal priority.

Figure 9 shows the key data structure used in the de-

centralized parallel wakeup. Each core maintains a per-

core wakeup queue (PWake-queue) to hold tasks sleep-

ing on such a queue, each of which sleeps on a wakeup

condition word. When a running task is about to sleep

(step 1), it will be removed from the per-cpu runqueue

and inserted to the per-cpu wakeup queue. Before enter-

ing the scheduler, if the kernel indicates that there is a

pending request (e.g., by checking the wakeup counter),

each core will first peek the PWake-queue to see if there

is any task to wake up by checking the status word. If

so, it will then insert the task to runqueue. This may add

some cost to the per-cpu scheduler when there are some

pending wakeup requests. However, as there are usu-

ally only very few tasks waiting in a single core, the cost

should be negligible. Further, as all operations are done

locally in each core, no atomic instructions and memory

barriers are required. Finally, as a task generally wakes

up on the core that last executed it, this task may ben-

efit from better locality in both cache and TLBs. Af-

ter checking the PWake-queue, each core will execute its

scheduler (step 2) to select a task to execute (step 3).

As the new wakeup mechanism may require a core to

poll the wakeup queue to reschedule wakeup tasks in the

per-core scheduler, it may cause waste of power when

there are no runnable tasks in a processor. To address this

problem, our wakeup mechanism lets each idle core use

the mwait mechanism1 to sleep on a global word (step

4). When a writer finishes its work and signals to wake

up its waiting tasks, the writer touches the word to wake

up idle cores, which will then start to check if any tasks

in the wakeup queue should be wakened up.

5 IMPLEMENTATION AND APPLICATIONS

We have implemented prwlock on several versions of

Linux, and integrated it with the Linux virtual memory

system by replacing the default rwlock. The porting ef-

fort among different versions of Linux is trivial and one

student can usually finish it in less than one hour.

Linux address space: As prwlock is still an rwlock, it

can trivially replace the original rwlock in Linux virtual

memory subsystem. We write a script to replace more

than 600 calls to mmap sem. We add several hooks to

process fork, exec, exit, wakeup and context switch. The

prwlock library comprises of less than 300 LoC and re-

quires manual change of less than 30 LoC other than the

automatically replaced calls to mmap sem. This is sig-

nificantly less than the prior effort (around 2,600 LoC

for page fault handling on anonymous memory mapping

only) [10], yet with a complete replacement.

User-level prwlock and RCU: We have also imple-

mented user-level prwlock, which comprise about 500

LoC. We further used the consensus protocol of prwlock

to implement quiescence detection to implement a user-

level RCU; this has better read-side throughput and faster

quiescence detection than previous user-level quiescence

detection mechanisms (section 6.3). We modified a fa-

mous database system named Kyoto Cabinet [17], by re-

placing a rwlock with prwlock to protect its data tables.

6 EVALUATION

6.1 Evaluation Setup

Kernel prwlock: We use three workloads that place in-

tensive uses of virtual memory: Histogram [24], which is

a MapReduce application that counts colors from a 16GB

bitmap file; Metis [19] from MOSBENCH [6], which

computes a reverse index for a word from a 2GB Text file

residing in memory; and Psearchy [6], a parallel version

of searchy that does text indexing. They represent differ-

ent intensive usages of the VM system, whose ratio be-

tween write (memory mapping) and read (page fault) are

small, medium and large. We also implemented a con-

current hashtable [25] in kernel as a micro-benchmark to

characterize prwlock and its alternatives.

User-space prwlock: We use several micro-

benchmarks to compare prwlock with several alterna-

tives like brlock and user-level RCU. As prwlock has a

user-level RCU library, we also compare its performance

1mwait/monitor are x86 instructions that setup and monitor if an

memory location has been touched by other cores.



to traditional signal-based user space RCU [14]. To show

that prwlock can scale up user-space applications, we

also evaluated the Kyoto Cabinet database using prwlock

and the original rwlock.

As the performance characteristic that prwlock relies

on are similar for Intel and AMD machines, we mainly

run our tests on a 64-core AMD machine, which has four

2.4 GHZ 16-core chips and 128 GB memory. For each

benchmark, we evaluate the throughput in a fixed time

and collect the arithmetic mean of five runs.

6.2 Kernel-level prwlock

6.2.1 Application Benchmarks

We compare the performance of prwlock with several al-

ternatives, including the default rwlock in Linux for vir-

tual memory, percpu read-write lock [5], and an RCU-

based VM design [10] (RCUVM). We are not able to di-

rectly compare prwlock with brlock as it has no sleeping

support. As RCUVM is implemented in Linux 2.6.37,

we also ported prwlock to Linux 2.6.37. As different

kernel versions have disparate mmap and page fault la-

tency, we use the Linux 2.6.37 kernel as the baseline

for comparison. For the three benchmarks, we present

the performance scalability for Linux-3.8 (L38), percpu-

rwlock (pcpu-38) and prwlock on Linux 3.8 (prw-38), as

well Linux 2.6.37 (L237), RCUVM (rcu) and prwlock

on Linux 2.6.37 (prw-237) accordingly.

Histogram: As histogram is a page-fault intensive

workload and the computation is very simple, it eventu-

ally hits the memory wall after 36 cores on Linux 3.8 for

both percpu-rwlock and prwlock, as shown in Figure 10.

Afterwards, both prwlock and percpu-rwlock show sim-

ilar performance thrashing, probably due to memory bus

contention. Percpu-rwlock scales similarly well and is

with only a small performance gap with prwlock; this is

because both have very good read-side performance. In

contrast, the original Linux cannot scale beyond 12 cores

due to contention on mmap sem. As a result, prwlock

outperforms Linux and percpu-rwlock by 2.85X and 9%

respectively on 64 cores.

It was quite surprising that prwlock significantly out-

performs RCUVM. This is because currently RCUVM

only applies RCU to page fault on anonymous pages,

while histogram mainly faults on a memory-mapped

files. In such cases, RCUVM retries page fault with

the original mmap sem and thus experiences poor per-

formance scalability. Though RCUVM can address this

problem by adding RCU support for memory-mapped

files, prwlock provides a much easier way to implement

and reason about correctness due to its clear semantic.

Metis: Metis has relatively more mmap operations

(mainly to allocate memory to store intermediate data),

but is still mainly bounded by page fault handling

on anonymous memory mapping. As shown in Fig-

ure 11, prwlock performs near linearly to 64 cores with

a speedup over percpu-rwlock and original Linux by

27% and 55% in 64 cores accordingly. This is mainly

due to scalable read-side performance and small write-

side latency. There is a little bit performance gap with

RCUVM, as RCUVM further allows a writer to proceed

in parallel with readers.

Psearchy: Psearchy has many parallel mmap opera-

tions from multiple user-level threads, which not only

taxes page fault handler, but also mmap operations. Due

to extended mmap latency, percpu-rwlock cannot scale

beyond 4 cores, as shown in Figure 12. In contrast,

prwlock performs similarly with Linux before 32 cores

and eventually outperforms Linux after 48 cores, with

a speedup of 20% and 5.63X over Linux and percpu-

rwlock for Linux 3.8. There is a performance churn

between 32 and 48 cores for Linux, probably due to

the contention pattern changes during this region. For

Linux 2.6.37 with smaller mmap latency, prwlock per-

forms similarly with Linux under 48 cores and begins

to outperform Linux afterwards. This is due to the con-

tention over rwlock in Linux, while prwlock’s excellent

read-side scalability makes it still scale up.

As psearchy is a relatively mmap-intensive workload,

prwlock performs worse than RCUVM as RCUVM al-

lows readers to proceed in parallel with writers. Under

64 cores, prwlock is around 6% slower than RCUVM.

Psearchy can be view as a worst case for prwlock and

we believe this small performance gap is worthwhile for

much less development effort.

6.2.2 Benefits of Parallel Wakeup

Figure 13 using the histogram benchmark to show how

parallel wakeup can improve the performance of both

RCUVM and original Linux. Parallel wakeup boosts

RCUVM by 34.7% when there are multiple readers wait-

ing. prwlock improves the performance of original Linux

by 47.6%. This shows that parallel wakeup can also be

separately applied to Linux to improve performance.

We also collected the mmap and munmap cost for both

Linux and prwlock, which are 934us, 1014us and 567us,

344us. With the fast wakeup mechanism, the cost for

Linux has decreased to 697us and 354us.

6.2.3 Benefits of Eliminating Memory Barriers

We use a concurrent hashtable [25] to compare prwlock

with RCU, rwsem and brlock. Figure 16 illustrates the

performance. RCU has a nearly zero reader overhead and

outperform all rwlocks. The throughput of rwsem van-

ishes because of cache contention. Thanks to elimination

of memory barriers, prwlock shows higher throughput

than brlock. More tests reveal that the lookup overhead

mainly comes from cache capacity misses while access-

ing hash buckets. Prwlock’s speedup over brlocks would
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Figure 10: Histogram throughput scalability for original

Linux, percpu-rwlock, prwlock on Linux 3.8
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Figure 11: Metis throughput scalability for original

Linux, percpu-rwlock, prwlock on Linux 3.8
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Figure 12: Psearchy throughput scalability for original

Linux, percpu-rwlock, prwlock on Linux 3.8
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Figure 13: Benefit of parallel wakeup for Histogram.
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Figure 15: Benefit of prwlock for an in-memory DB
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Figure 18: Relation between reader/writer throughput

be much larger if there was a cache hit (not shown here).

By using rwlocks instead of RCU, resizing the

hashtable is much simpler and faster as all readers are

blocked during resizing. Figure 17 presents the total

latency to shrink and grow the hash table on different

concurrency levels. Rwlocks shows up to two orders of

magnitude shorter resizing latency compared to RCU. As

hashtable resizes have negative impact on lookup per-

formance, shorter resize latency is desirable to main-

tain a stable lookup performance. Prwlock only shows

marginally better performance compared to other two

rwlocks, as in this test most of the time is spent in critical

section rather than writer lock acquisition.

6.2.4 Critical section efficiency

To better characterize different rwlocks, we also evalu-

ate their raw critical section overhead (lock/unlock pair

latency), which is shown in Table 3. prwlock shows best

reader performance as its common path is simple and

has no memory barriers. It is interesting that prwlock

has much higher writer latency when there is no reader,

since the writer has to use IPIs to ask every online core to

report. Though rmlock (Read-Mostly Lock in FreeBSD)

also eliminates memory barriers in reader common paths,

its reader algorithm is more complex than prwlock, and

thus results in higher reader latency. Writer of rwsem

(Linux’s rwlock) performs well for few readers, but suf-

fers from contention with excessive readers.

brlock rmlock rwsem prwlock

Reader latency (1 reader) 58 46 107 12

Reader latency (64 readers) 58 46 20730 12

Writer latency (0 reader) 17709 136 100 65511

Writer latency (63 readers) 89403 622341 3235736 6322

Table 3: Critical section efficiency (average of 10 millions runs)

6.3 User-level Prwlock

Figure 18 shows the impact of writer frequency on reader

throughput for several locking primitives, by running 63

reader threads and 1 writer thread. Writer frequency

is controlled by varying the delay between two writes,

which is similar done as Desnoyers et al. [14]. Note that

1 writer is the worst case of prwlock since if there is more

than 1 writer, the writer lock could be passed among writ-

ers without redoing consensus. To compare the time for

a consensus, we fixed the batch size of both RCU algo-



rithms to 1. That means they must wait a grace period

for every update.

Prwlock achieves the highest writer rate. This con-

firms that our version-based consensus protocol is more

efficient than prior approaches. Prwlock’s read side per-

formance is similar to RCU, and notably outperforms br-

lock, mainly because prwlock requires no memory bar-

riers in reader side. Parallel wakeup also contributes

to prwlock’s superior performance. Since it improves

reader concurrency, prwlock is able to achieve higher

reader throughput when there are many writers. Writer

performance is also greatly improved since wakeup is of-

floaded to each core.

We can also notice that prwlock-based RCU performs

consistently better than the signal-based user-level RCU.

Thanks to prwlock’s kernel support, the reader-side al-

gorithm of prwlock RCU is simpler, which results in a

higher reader throughput. Besides, prwlock-RCU has or-

ders of magnitude higher writer rate than signal-based

RCU, due to its fast consensus protocol.

We further vary the batch size to study RCU perfor-

mance, as shown in Figure 14. Prwlock-RCU reaches its

peak performance before the batch size reaches 100 and

performs much better when the batch size is less than

1000. Small batch size helps control the memory foot-

print since it allows faster reclamation of unused objects.

Kyoto Cabinet: Figure 15 shows the improvement of

prwlock over using the original pthread-rwlock. As the

workload for different number of cores is different, the

increasing execution time with core does not mean poor

scalability. For all cases, prwlock outperforms original

rwlock and the improvement increases with core count.

Under 64 cores, prwlock outperforms pthread-rwlock by

7.37X (124.8s vs. 920.8s). The reason is that the work-

load has hundreds of millions read accesses and pthread-

rwlock incurs high contention on the shared counter,

while prwlock places no contention in the reader-side.

7 CONCLUSIONS AND FUTURE WORK

This paper has described passive reader-writer lock, a

reader-writer lock that provides scalable performance for

read-mostly synchronization. Prwlock can be imple-

mented in both kernel and user mode. Measurements on

a 64-core machine confirmed its performance and scala-

bility using a set of application benchmarks that contend

kernel components as well as a database. In future work,

we will investigate and optimize prwlock in a virtualized

environment (which may have higher IPI cost).
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