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ABSTRACT

This paper considers and validates the applicability of leveraging
pervasively-available performance counters for detecting and rea-
soning about security breaches. Our key observation is that many
security breaches, which typically cause abnormal control flow,
usually incur precisely identifiable deviation in performance sam-
ples captured by processors. Based on this observation, we imple-
ment a prototype system called Eunomia, which is the first non-
intrusive system that can detect emerging attacks based on return-
oriented programming without any changes to applications (either
source or binary code) or special-purpose hardware. Our security
evaluation shows that Eunomia can detect some realistic attacks
including code-injection attacks, return-to-libc attacks and return-

oriented programming attacks on unmodified binaries with rela-
tively low overhead.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information Systems]:
Security and Protection—unauthorized access

General Terms

Security

Keywords

Performance Counters, Return-oriented Attacks, Return-to-libc At-
tacks, PMU Deviation

1. INTRODUCTION
Security breaches are a major threat to the dependability of com-

puter systems and can cause not only economic effect but also so-
cial impact. However, many previous mitigation approaches are
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either heavyweight in requiring non-trivial modifications to proces-
sor architectures [7], or intrusive in requiring source-code or binary
modifications to applications [15]. Further, some emerging attack-
ing approaches such as return-oriented programming [11] are usu-
ally difficult to be detected using existing techniques.

In this paper, we propose a non-intrusive approach to detecting
a series of security breaches, which requires no changes to exist-
ing hardware, source code or binaries. The approach we propose,
namely Eunomia, leverages the pervasively available performance
monitoring units (PMUs) in commercial processors, to monitor per-
formance deviation of a running application to detect possible at-
tacks.

The key observation is that security breaches usually cause ab-
normal control flow that can be precisely captured by PMUs in pro-
cessors. For example, attacks involving code-injection usually need
to transfer control flow to injected code, while return-to-libc attacks
and return-oriented programming need to break the control flow in-
tegrity of a program.

To validate our observation, we design and implement a proto-
type called Eunomia, to detect a series of attacks, including both
code-injection and return-based1 attacks. To detect such attacks,
Eunomia continuously monitors performance samples using spe-
cific events during the program execution and correlates the events
with the program execution context (such as instruction addresses
and callers of library functions). Any deviation in performance
samples can be used as signs of possible attacks. Upon the de-
tection of an attack, the performance samples information such as
branch traces can be used to locate the exploited security vulnera-
bility and determine how the vulnerability is exploited.

To confirm the effectiveness of Eunomia, we have conducted
some preliminary security tests using real-world vulnerabilities.
Our evaluation results indicate that Eunomia can precisely detect
the attacks at the first time they happen. Performance evaluation
results show that Eunomia incurs small performance overhead for
real-world applications.

2. SECURITY BREACHES AS PMU

DEVIATION

2.1 Candidate PMU Features
There are a number of standard PMU features such as record-

ing the occurrences of branch miss predictions, instruction TLB
(iTLB) misses and L2 cache misses. Further, recent processors also
provide several advanced features. The followings list two features
from recent Intel processors:

1We consider return-to-libc attack and return-oriented program-
ming attack as return-based attacks



Precise Event Based Sampling (PEBS): In PEBS, performance
samples are directly recorded into a predefined memory region
when the occurrences of the event exceed a threshold, instead of
generating an interrupt immediately. An interrupt is generated
when predefined memory region is full. This mechanism enhances
performance monitoring performance by batching each sample into
a predefined buffer and processing them together. With the atomic-

freeze feature, the reported IP in predefined memory is precisely
the instruction immediately following the instruction causing the
event.

Branch Trace Store: BTS provides a mechanism to capture
control transfer events including all types of jump, call, return,
interrupt and exception. The recorded information includes the
source address, target address and properties of the control transfer.
Thus, it provides the ability to trace the control flow of program
execution. In Intel Core and Core i7, the branch trace informa-
tion is generated and delivered to the system bus, and then directly
recorded into a predefined memory region, similar to PEBS.

2.2 PMU Deviation in Common Attacks
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Figure 1: An example illustrating return-oriented program-

ming.

Currently, there are two typical types of attacks according to the
means to gain control of a program: code-injection attack, which
directly injects external shellcode to a program; and return-based
attack, which reuses existing binary code as shellcode. Code-
injection attacks usually inject external shellcode to a program by
exploiting some vulnerabilities, such as buffer overflow, format
string and dangling pointer, and then overwriting a return address
or a function pointer to transfer control to the injected code.

For return-based attacks, we further divide them into two types:
return-to-libc attacks and return-oriented programming attacks.
Return-to-libc attacks directly exploit security-sensitive library
routines such as “execve” with attacker-supplied arguments (e.g.,
a root shell) to gain control. By contrast, return-oriented program-
ming reuses binary code fragments in existing binary to form a
shellcode. The essence of return-oriented programming is illus-
trated in Figure 1, which leverages control of the call stack to in-
directly execute cherry-picked machine instructions or groups of
machine instructions immediately prior to the “ret” in subroutines
within existing binary. The composed code may act as a typical
shellcode that binds a tcp to open a remote root shell upon connec-
tion.

According to our analysis, these attacks above, no matter how
they exploit vulnerabilities (e.g., format string or buffer overflow),
usually behave different in performance samples. Hence, unlike

some prior attack detection schemes that focus on a particular se-
curity vulnerability, our method detects attacks not according to
which vulnerability they exploit, but how they behave abnormally
in performance samples. We find that both the two types of attacks
result in deviation in control flow, thus incur some precisely identi-
fiable performance samples. Table 1 summarizes the performance
deviation in such attacks and how the attacks can be monitored
with PMU events. As the table shown, there are some PMU events
to detect each type of these attacks. For code-injection attacks, the
injected code is executed on data sections (e.g., stack or heap), thus
results in deviation for program counters in branch_miss_predict,
itlb_misses and branch traces. For those reusing library routines or
binary code, they will result in abnormal control flow in attacking
runs that violate the control flow integrity. This will be reflected by
abnormal performance samples using the BTS mechanism in x86
architecture.

2.3 Detecting Attacks Using Performance
Counters

Detecting Code-injection Attacks: For attacks that inject shell-
code and cause control transfer to the injected code in data sections
(e.g., stack or heap), there will be abnormal performance samples
such as itlb_misses in data sections. This provides a strong evi-
dence of possible attacks.

Using this method to defend against code-injection attacks has
similar protection ability with non-execution bit protection, but it
is more flexible. Eunomia can do application-specific pattern anal-
ysis, to identify the patterns of how an application executes code in
data sections and filter them out.
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Figure 2: The algorithm to detect return-to-libc attacks.

Detecting Return-to-libc Attacks: For attacks that directly
reuse sensitive library routines such as “execve” with attacker-
supplied arguments, we need to check the callers of this library
routine. Before running a program, Eunomia preprocess applica-
tion binaries, analyzes the callers of library routines and records
callers for each library routine as its legal callers, as shown in Fig-
ure 2. As library routines are called from GOT entry2 whose entry
addresses are statically determined, Eunomia can easily determine
the legal callers of each library routine. We only need to record
legal callers in applications.

During the check, Eunomia uses the branch trace store (BTS)
mechanism to record each control transfer and checks the source
and target of each transfer in the sample. If the branch target is a
library routine, Eunomia checks if the source address is in the legal

2GOT entry is short for global offset table, which works together
with program linkage table to identify loaded library routine ad-
dress in dynamic linker.



Attack Type Description PMU Events

Code-injection Inject code and take control transfer to injected code
Branch Tracing Event(BTS)
Branch Miss Predict Event

Instruction TLB Misses Event

Return-to-libc
Use library calls instead of inject code Branch Tracing

Event(BTS)(e.g., invoke “execve” with “bin/bash”)

Return-oriented

programming
Use instructions before “ret” in existing library Branch Tracing

Event(BTS)and binary code to form shellcode

Table 1: Deviation in performance characteristics of common attacks.

set of callers and reports an alarm if not. However, attacks can use
existing “call” in binary to indirectly invoke a library routine. For
such attacks, Eunomia checks one more step further. If the target
address in previous sample and the source address in this sample
are the same, Eunomia reports an alarm, as illustrated in Figure 2.
This method may cause false positives if there are consecutive calls
in normal execution, since it behaves like indirect caller of library
routine in samples. To filter out this kind of false positive, Eunomia
records these consecutive calls when doing binary preprocessing
and avoids reporting an alarm in this situation.
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Figure 3: The algorithm to detect return-oriented program-

ming attacks, which uses suspicious value of insns before

“ret” and checks the accumulated value against the predefined

threshold.

Detecting Return-oriented Programming Attacks: To detect
return-oriented programming attacks, Eunomia needs to check the
control flow integrity of a program execution. Ideally, Eunomia
should record all legal addresses of a “ret” instruction can return
to. However, due to the “unintended instruction sequences” in x86,
all opcode has the byte “0xc3” could be viewed as the instruction
“ret”, even if the byte “0xc3” is in a jump instruction (e.g. “jmp
0x3aae9” has opcode “e9 c3 f8 ff ff”). It is usually difficult and
time-consuming to build and check with the legal set of control
flow graph.

Because most of such attacks need to reuse several instruc-
tions before instruction “ret” to form shellcode [14], the target of
branches in return-oriented shellcode typically follows a “ret” in-
struction within usually one to three instructions 3.

Hence, Eunomia exploits the branch tracing ability provided
by BTS to detect such attacks. Before running a program, we
preprocess the binary, analyze all instructions that appear before
“ret”4. We assign a suspicious value to each instruction according

3Those reusing more than 3 instructions before “ret” are hard or
impossible to construct in real-world [14].
4This “ret” refers to all “0xc3” including “ret” in “unintended in-

to their distance to “ret” and store the IP, opcode and the suspi-
cious value into a hashtable, as shown in Figure 3. For dynami-
cally linked libraries, Eunomia also processes them when the dy-
namic linker loads libraries and updates the hashtable accordingly.
During program execution, Eunomia checks the address of each
branch target in performance samples to see whether it is in the
hashtable. If a consecutive number of branch targets fall into the
hashtable and the accumulated suspicious value exceeds a prede-
fined threshold, a return-oriented programming attack has likely
occurred. To our knowledge, Eunomia is the first system that can
detect return-oriented programming attack without modification to
programs [12], binary instrumentation [8] or special-purpose hard-
ware.

Currently, Eunomia does not consider return-oriented program-
ming that uses an update-load-branch sequence [4] such as pop

%eax; jmp ∗%eax. As the BTS mechanism supports collecting
all branch traces, Eunomia should be able to extend Eunomia to
detect such a scheme. Eunomia could be enhanced to collect all
instructions with update-load-branch effect and use the collected
branch traces to identify abnormal control transfers, which will be
our future work.

3. IMPLEMENTATION OF Eunomia
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Figure 4: Architecture of Eunomia.

We have implemented a preliminary version of Eunomia based
on perf_events on Linux kernel version 2.6.34. Currently, Eunomia
supports Intel Core Duo and Core i7 processors and focuses on
user-level attacks only.

The overall architecture of Eunomia is shown in Figure 4. Eu-
nomia is composed of two parts: the kernel extension that pro-
vides interfaces for user tools to set up events and read perfor-
mance samples; and a user-level tool that uses the performance

struction sequence”.



samples to detect possible security attacks. The user-level tool is
in the form of a monitoring process, which checks the performance
samples generated by the application processes. To synchronize
the monitoring process with the application processes, the moni-
toring process is executed as the parent process of the application
processes. Eunomia uses ptrace-based techniques to synchronize
monitoring process and application processes. To start an appli-
cation, the monitoring process forks a child process. Before the
child uses exec to run the application, the child process calls ptrace

with the PTRACE_TRACEME flag to cause the child process to be
suspended when exec is executed. The monitoring process sets up
performance events and sample buffers for the child process and
then lets the child process run. Afterwards, these two processes
run simultaneously. To reduce interference between the monitor-
ing process and the application processes, Eunomia supports the
binding of each process into different cores on multicore hardware.

During normal execution, the event samples of the application
processes are written to a performance sample buffer monitored by
the monitoring process. As the per-sample check is very costly, Eu-
nomia chooses to check samples in a batched mode, which notably
reduces performance overhead. Fortunately, in Intel processor fam-
ilies, they widely use predefined buffer to record events (e.g., PEBS
and BTS), this mechanism not only amortizes the cost of exception
handling, but also enhances the accuracy of sampled information
and fits naturally into our batch-mode checking. For events with-
out predefined buffers (e.g., itlb_misses and branch_miss_predict),
Eunomia manually records the performance samples into a buffer
and signals the monitoring process when the buffer is full. Euno-
mia controls the frequency of security checks by setting the length
of the sample buffer.

The monitoring process is executed in an event-driven way and
will take action in two cases: a signal is received (e.g., the event
buffer is full); or the application processes are trying to invoke sen-
sitive system calls (e.g., execve, which is usually called by shell-
code). In both cases, the monitoring process will suspend the ap-
plication processes, do the security check and then resume the ap-
plication processes after the check. This prevents the application
processes from running out-of-sync, which may cause the sample
buffer being overwritten with new data, or harmful effects to the
system being made by attacks. According to our experience, the
checking time in the monitoring process is very short with low CPU
utilization. Thus, the overhead due to the suspend time of applica-
tion processes is very small.

Eunomia also supports the post-attack analysis by using the per-
formance samples of BTS, which provides useful information for
detailed post-attack diagnosis. Thus, Eunomia is capable of finding
the trace from normal function to the injected code. To use per-
formance samples for post-attack diagnosis, Eunomia can dump a
portion of performance samples containing abnormal control flow.

4. PRELIMINARY RESULTS
All evaluations were performed on an Intel Core i7 processor

with 4 cores. The operating system is a Redhat Enterprise Linux
with kernel version 2.6.34.

4.1 Security Analysis
We use Samba Server version 3.0.21 with a heap overflow

vulnerability (CVE-2007-2446) and Squid-2.5.STABLE1 with a
stack overflow vulnerability (CVE-2004-0541) to illustrate the de-
tectability of Eunomia. We attack them by three means, namely
code-injection attack, return-to-libc attack and return-oriented pro-
gramming attack. However, due to the vulnerability type, we can
not form a return stack in Samba Server, so we failed to exploit

Samba Server with return-oriented programming attack. To detect
these attacks, we set the threshold of performance events to one 5

to minimize false negatives. The threshold for detecting return-
oriented programming attacks is set as 15, which is enough to de-
tect most attacks. As expected, all attacks are detected by Eunomia
in the evaluation and Eunomia detects these attacks at the first time
an abnormal performance sample is generated.
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attack for Samba Server.

Post-Attack Diagnosis: We also use Samba Server to illustrate
the post-attack diagnosis ability of Eunomia using the BTS mech-
anism. As shown in Figure 5, when a code-injection attack is de-
tected, Eunomia dumps the performance samples with abnormal
control flow. From the back traces of the attack, we can easily
find that the shellcode is reached by calling “destructor” function
pointer in “talloc_free”. Virtually, Eunomia can back trace as far as
the dumped samples can reach. Here, we only provide five function
records in the back trace, which is usually enough for understand-
ing the attack.

4.2 Performance Results
We evaluate several applications in three categories: widely-

used server applications, including Apache Web Server, Postgres
Database Server and Exim Mail Server [1]; emerging applications
including Memcached [10] and Metis [13]; and daily used tools in
Linux system, including OpenSSH, a server application for secure
remote shell and Tar, which is a compressing tool. For Apache
Web Server and OpenSSH, we evaluate them by both latency and
throughput. The latency for OpenSSH is the connection time,
which is measured by calculating the average connection time of
10,000 connections. The throughput for OpenSSH is measured by
transferring 1 Gbyte file using scp. For Apache Web Server, we
use apache benchmark (ab) by issuing 500,000 requests with con-
currency level of 100.

Performance for Detecting Code-injection Attacks: There
are three events that can be used to detecting code-injection
attacks, which are itlb_misses, branch_miss_predict and BTS
mechanism. According to our evaluation, the event counts of
branch_miss_predict could be more than 10 times larger than the
counts of itlb_misses and control transfer counts captured by BTS
mechanism could be 80 times larger than the counts of itlb_misses

in the same run. Using benchmarks mentioned above to eval-
uate these three types of events, we found relative performance

5The threshold for BTS is one in nature.



overhead is 4.72%, 1% and 0.1% on average for using BTS,
branch_miss_predict and itlb_misses accordingly. Thus, for detect-
ing code-injection attacks, itlb_misses event is most appropriate.
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Figure 6: Performance overhead of Eunomia to detect code-

injection and return-based attacks with BTS.

Performance for Attack Detection with BTS: Figure 6 shows
the relative performance overhead for these applications, from the
figure, we can see that Eunomia incurs acceptable performance
overhead, with only 4.72% on average, ranging from 0.09% to
10.49%, which means Eunomia can be applied to real-world ap-
plications on off-the-shell systems in daily use.

We also measured the inherent overhead of the BTS mechanism
alone and found that the performance overhead is almost the same
as using BTS together with Eunomia, as shown in Figure 6. This
indicates that the detection logic of Eunomia causes very little per-
formance overhead itself. The major reason for overhead in BTS is
due to the large number of performance samples, including all types

of jump, exceptions, calls and returns. Among them, we actually
only need samples for call and returns. This demands a hardware
supported samples selection mechanism.

5. RELATED WORK
Performance counters have been used extensively for perfor-

mance profiling and online optimization. Being aware of the im-
portance of performance counters, previous researchers have pro-
posed a variety of architectural techniques in order to provide low-
overhead, non-intrusive and accurate performance monitoring [9,
2]. Avritzer et al. [3] performed a set of tests to measure CPU,
memory and I/O usages between normal and attacking runs and
concluded that the accumulated resource usages tend to be differ-
ent. However, they failed to show how to leverage the difference
for precise and in-place detection of attacks.

As Eunomia, previous researchers have also leveraged existing
hardware support for security. For example, SHIFT [5] exploits
existing hardware support for control speculation to implement an
efficient and flexible taint tracking system. BOSH [6] uses the flow-
sensitive tags in taint tracking to implement an efficient binary ob-
fuscation system. Compared to Eunomia, these systems require
instrumenting the software using compilers, thus cannot work on
unmodified and deployed binaries.

6. CONCLUSION AND FUTURE WORK
This paper observed that typical security exploits usually result

in precisely identifiable deviation in performance samples. Based

on the observation, we designed and implemented Eunomia, which
leveraged performance counters for the purpose of detecting a wide
variety of security attacks. Our evaluation showed that Eunomia
could effectively detect attacks on real-world security vulnerabili-
ties with low overhead. Our future work includes more analysis on
false positives and false negatives in Eunomia, enhancing existing
PMUs to detect more security vulnerabilities as well as software
bugs, and cooperating with compiler transformations or instrumen-
tation to increase the precision of Eunomia.
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