
Evaluating SPLASH-2 Applications Using MapReduce

Shengkai Zhu, Zhiwei Xiao, Haibo Chen, Rong Chen, Weihua Zhang, and Binyu Zang

Parallel Processing Institute, Fudan University

Abstract. MapReduce has been prevalent for running data-parallel applications.
By hiding other non-functionality parts such as parallelism, fault tolerance and
load balance from programmers, MapReduce significantly simplifies the pro-
gramming of large clusters. Due to the mentioned features of MapReduce above,
researchers have also explored the use of MapReduce on other application do-
mains, such as machine learning, textual retrieval and statistical translation,
among others.

In this paper, we study the feasibility of running typical supercomputing ap-
plications using the MapReduce framework. We port two applications (Water
Spatial and Radix Sort) from the Stanford SPLASH-2 suite to MapReduce. By
completely evaluating them in Hadoop, an open-source MapReduce framework
for clusters, we analyze the major performance bottleneck of them in the MapRe-
duce framework. Based on this, we also provide several suggestions in enhancing
the MapReduce framework to suite these applications.

1 Introduction

MapReduce [1], advocated and popularized by Google, has been prevalent for data-
parallel applications due to its simplicity yet still powerful processing capability. It has
been widely deployed in Google’s own clusters and used for various applications such
as web-search, indexing and log analysis.

Though Google’s implementation detail is fairly secretive for the public domain,
Apache has provided Hadoop [2], an open-source implementation of the MapReduce
framework. It has gained significant popularity recently due to its practicality, cost-
effectiveness and openness. Thus, it has been widely adopted in various application
domains such as statistical machine translation [3], textual retrieval [4] and machine
learning [5].

The elegance of MapReduce, the readily availability of the cost-effective Hadoop
implementation would also open opportunities to run many parallel or supercomputing
applications on commodity clusters. Running parallel or supercomputing applications
on MapReduce, if applicable, would make the power of solving many difficult scientific
problems ubiquitously accessible at a very low cost. Bryant [6] has recently discussed
the possibility of running some data-intensive supercomputing applications such as ge-
nomic sequences and earthquake modeling on commodity clusters. Unfortunately, there
are currently few studies on the performance characteristics of parallel applications on
commodity clusters with multi-core.

In this paper, we port and evaluate two parallel applications from the SPLASH-2 [7]
benchmark suite which originally run in large shared-memory multiprocessors to a

Y. Dou, R. Gruber, and J. Joller (Eds.): APPT 2009, LNCS 5737, pp. 452–464, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Evaluating SPLASH-2 Applications Using MapReduce 453

small-scale commodity clusters with multi-core, aiming at studying the performance
characteristics of these applications on commodity clusters.

We have conducted a detailed evaluation on the performance characteristics of these
applications. Our evaluation results in a 17 dual-core cluster (1 master node, 16 slave
nodes) show there are some performance bottlenecks and we further summarize the key
causes of the slowdown. With a detailed and complete analysis, we also present several
potential optimization opportunities.

The rest of the paper is organized as follows. The next section presents the necessary
background knowledge on MapReduce and Hadoop. In section 3, we port two typical
scientific applications from SPLASH-2 suite to run on Hadoop and illustrate the major
issues associated with the porting. Section 4 presents a detailed performance evaluation
of Hadoop on a commodity cluster. Section 5 discusses several optimization opportu-
nities to improve the performance of MapReduce for supercomputing applications on
commodity clusters. Section 6 discusses the related work and section 7 concludes this
paper.

2 Background

This section presents the necessary background information on the general MapReduce
programming model and the design and implementation of Hadoop.

2.1 MapReduce Programming Model

The programming model of MapReduce is inspired by the functional programming
primitives such as Map and Reduce. MapReduce processes the input and intermedi-
ate data in a Single Program Multiple Data (SPMD) fashion. The Map processes the
input data and generated a set of 〈key, value〉 pairs, while the Reduce aggregates all
〈key, value〉 pairs according to the key.

The following pseudo-code in Figure 1 shows the Word Count application written
using the MapReduce programming model, which counts the number of occurrences of
each word in a document. The Mapper function emits a 〈word, 1〉 pair for each word
in document, and the Reducer function counts all occurrences of a word as the output.

��������	�
���
�����
���
���������	��������
����	��
�
�������������
��������

����������������
���������� ����������������!
"�������������� ���������������

������	�����
���
�����	�
���������
���
#���
����������
������
�����������	�$!�
��������

���
��������
�����
�����������%	��
���!
�������������������!��
"�������������� ���������������

Fig. 1. Mapper and Reducer of Word Count in MapReduce

454 S. Zhu et al.

I
n

p
u

t
D

a
ta

Local

Disk

Local

Disk

Output

Data

Output

Data

W
o

r
k

e
r Data

Node

Task

Tracker

W
o

r
k

e
r Data

Node

Task

Tracker

W
o

r
k

e
r

Data

Node

Task

Tracker

W
o

r
k

e
r

Data

Node

Task

Tracker

MR

Code Ma s t e r

Nam e

Node

Job

Tracker

Fig. 2. MapReduce Execution Flow

2.2 The Hadoop Design and Implementation

Hadoop is an open-source implementation of the MapReduce framework. Hadoop uses
a distributed file system, namely Hadoop Distributed File System (HDFS) to store the
input and the final results. HDFS manages a number of local disks owned by the nodes
in a cluster and maps them to a single file system. The HDFS resembles the Google File
System in the fashion of handling storage failures using several replicas of the same
data. One of the key principles in Hadoop is that “moving computation is much cheaper
than moving data”. Thus, Hadoop schedules the MapReduce tasks to the node near the
data storage to minimize the data transfers.

An overview of the architecture and the execution flow of Hadoop are shown in
Figure 2, which uses a master-slave mode. There is a master node that runs the Job
Tracker for task allocation and scheduling, and Name Node for HDFS metadata man-
agement. To run a MapReduce task, the Job Tracker allocates the Task Trackers on the
slave nodes to run the map or reduce tasks. Each slave node may also be the data node,
which stores the data blocks of file in HDFS. The task tracker consults the Name Node
to get the specific Data Node to get the data for a file.

3 Implementing SPLASH-2 Applications with Hadoop
MapReduce

This section introduces the SPLASH-2 benchmark suite and how two of them are ported
to the MapReduce framework.

3.1 SPLASH-2 Suite

The SPLASH-2 suite consists of a set of complete applications and computational ker-
nels. The programs represent a variety of computation workloads in scientific, graphics

Evaluating SPLASH-2 Applications Using MapReduce 455

computing and engineering. The suite is designed to facilitate the study of centralized
and distributed shared address-space multiprocessors. We choose Water Spatial, a water
molecule simulation system and Radix Sort, an integer radix sort kernel for porting and
evaluation. We believe that these two typical scientific and engineering programs cover
the major characteristics of supercomputing with MapReduce.

Water Spatial is an N-body molecules dynamics application that evaluates the forces
and potentials which occur over time in a cluster of water molecules in a liquid state.
It is improved from the program water in SPLASH [8]. In an initial state, configurable
number of water molecules are scattered in a cubical space. They are generated globally
with random coordinate and velocity. Also many other physical and system parameters
are carried by each molecule. Most of them will be updated several times during the
whole life time of the application. Further documentation and details of the Water Spa-
tial models can be found in [9, 10, 11].

Radix Sort is a small computational kernel performing sorting on integers using an
iterative algorithm. Its implementation is based on [12].

3.2 Implementing Water Spatial(WS) and Radix Sort(RS) in MapReduce

Data Structures. In typical supercomputing applications, lots of mathematical, phys-
ical and system parameters are involved during the whole computation. Arrays and
matrices are the most commonly adopted data structures. And in a system with large
amounts of elements, the items are also kept in a list-based structure.

Due to well-defined partition methods and synchronization mechanisms, access to
shared data is not difficult in a shared address-space environment. However, in a cluster
environment, data structures need to be serialized into the distributed storage system for
remote access. In Hadoop, the HDFS (Hadoop Distributed File System) is deployed to
hold the data.

As a result of heavy network communications, access to shared data turns to be a sig-
nificant source of overhead. Hence, the data partition policy in MapReduce determines
the efficiency of the parallel algorithm implemented. A well-designed data structure
and partition method could avoid a lot of unnecessary network communications, which
could be the bottleneck in many cases.

Data updates in MapReduce can be done in different approaches. For fields owned
by each basic element, its information can be refreshed through a direct update in the
map/reduce phase. A global aggregative variable is usually updated in a synchronization
point, accomplished by a MapReduce job with single reduce task. Data movements
are the most complicated and common cases in typical supercomputing applications,
resulting from changes of inter-data relation, which in turn forces a reconstruction of
data partitions.

Computation Steps. Many supercomputing applications can be divided into several
computation steps, often with a number of iterations doing a series of calculation. Be-
tween two consecutive steps, global data synchronization is performed to ensure the
correctness of succeeding computing.

In MapReduce, unlike the shared-memory environment, data synchronization can
only be performed after completion of a job and is costly. Usually, the number of global
barriers defines a lower bound of the number of MapReduce jobs.

456 S. Zhu et al.

According to different behaviors of MapReduce jobs, jobs composing a typical su-
percomputing can be classified into three categories: element-update jobs, global-
variable aggregation jobs and mixed jobs. The mixed job performs the element-update
and does aggregation for a global variable in the same phase.

During a MapReduce computation, each map/reduce task works on their local copy
of data. Data updates on global storage have to be performed after each MapReduce
job. The distributed file system significantly affects the efficiency of the data-sharing.
There is also consistency problem associated with it. The computation in each phase is
thus required to dump the updated data into distributed storage with a specific format,
which can be recognized and read effectively by the next worker. Usually the formats
are designed specifically for each situation.

A Walkthrough for Water Spatial. At the beginning of a Water Spatial instance, ran-
dom input data is generated and stored in HDFS, with only append operation allowed.
Thus, the data file has to be reconstructed after each update.

The storage format of the basic element, water molecule, is shown in Figure 3. It
consists of coordinates and other parameters holding the force and energy information.
However, these two parts of parameters are rarely modified simultaneously in the same
phase. This makes it unnecessary to hold these two parts in the same chunk of storage.
During the data reconstruction, accesses to the part not involved in computation would
unnecessarily increase the network load. Taking this into consideration, we store the
coordinates of molecule and other physical information in two separated chunks. Each
molecule will be assigned a unique identifier used as an index to refer to the both parts.

Water Spatial consists of a series of complex computations, with all three kinds of
MapReduce jobs involved. The detail computation flow is shown in the Figure 4. Three
phases can be transformed as mixed jobs, while the rest perform only element update.

Input data in Water Spatial is partitioned on the molecules according to their coordi-
nates. In the shared-memory version of SPLASH-2, molecules with the same

�������������	��
��
����������	�

�������������	��
�������������	��
��������

���������
���������
��
������
���������
���������
���������
���������
���������
��������

Fig. 3. Data Format of Molecules

���������	�
���	����
����������

����	����	��
�
�
��������

������������	�
����
��������
������
�����	������

�������������		����
��������

����������
�	������
�����

��
����������������	�����������

�����������������������	��

�����

Fig. 4. Execution Flow of Water Spatial

Evaluating SPLASH-2 Applications Using MapReduce 457

��������	
���
�
��������������������	
�	
����
���������������������������������
�
������	��	
�����	�������������
�
������
��������������� ���������������

����������� ��!�����
�
��"��#���������$��
�����������!�����	
�!������
����"��#�������%��!�����
������	����� ��"��#�������
���

��������������� ���������������

Fig. 5. Mapper and Reducer for Aggregation Job

��������	
���
�
��������������������	
�	
������������������

�����������������
�
��	��	
��������������������
��

��������������� ���������������

Fig. 6. Mapper for Update-Only Job

��������	
���
�
���������������������	
�	
����
���� 	����	��������������
�
�
����������������������������������
���������

����������������� ��������������
��������������
��	��	
�����!�""#����������
�

$�������������� ���������������

Fig. 7. Mapper for Mix Job

coordinates are processed in a single thread together. We keep such a design here but
hold their coordinates and other parameters in different chunks.

An aggregation-only job can be performed intuitively by MapReduce. The Mapper
in Figure 5 collects information from all molecules. The Mapper calculates concerned
value from some fields and emits it to the intermediate key-value pair. Each key in these
pairs represents the different global variables aggregated.

Most update-only jobs can also be processed easily in MapReduce. The fields of
each element are modified through the computation. The Mapper described in Figure 6
needs only to update the molecule passed in and then bounces it to the Reducer.

Since the output key-value pair should always be the same type during a computation
phase, the Mapper designed for a mixed job in Figure 7 is much more complicated. In
our implementation, the Molecule is taken as our output key-value pair type. Besides,
we use fake molecules to carry the aggregation values.

The Reducer for all kinds of job can be easily set to the IdentityReducer, which is
built in the Hadoop framework, simply doing sorting on the map outputs. In some ag-
gregation jobs, the number of reduce workers has to be set to one. Otherwise, a routine
out of the framework should do the aggregation for Reducer.

There are two special phases in Water Spatial which compute inter-water forces and
their potential energy. The computation needs to calculate the molecules with all their
neighbors within effective radius. While the radius is larger than a single data partition
block, this Mapper would process much more molecules than regular cases. Further,
the inter-neighbor communication in a 3D space significantly increases the network
load for these redundant transmissions.

458 S. Zhu et al.

A Walkthrough for Radix Sort. Data involved in Radix Sort is a list of integers to be
sorted. The input set can be partitioned intuitively and will not be modified during the
computation. This makes its storage format much simpler than that of Water Spatial.

Radix Sort consists of iterative histogram computing. The computation involved in
the program is a simple histogram performing for each radix r digits. The number of the
MapReduce jobs is determined by the iteration number, which is in turn determined by
the max integer provided by users. The Mapper for Radix Sort simply ranks the entire
integer passed in on the specific r digits for each iteration, forming a histogram with 2r

buckets, whose indices range from 0 to 2r-1. Each integer is processed from the least
significant r digits to the most significant r digits through the loop.

All the local histograms constructed in the map tasks will be merged into a single
global histogram. Thus, the number of reduce tasks is required to be set to one. Ac-
cording to the global histogram, a partial sorting on those r digits can be performed
correctly. After the last iteration, these integers come to an ordered state.

Instead of only ranking the 2r buckets of each iteration, our implementation of Radix
Sort takes the whole integer as the element for histogram in computation and collects
those integers with the same r digits value in the corresponding bucket. This implemen-
tation ensures that an ordered sequence can be reached just in the time of processing
each reduce phase. No more efforts for permutation are needed in the client end that
starts the job, which is necessary if Reducer only ranks the buckets. In that case, a
large amount of data transmission would occur on this single node to copy all integers
required at each permutation computing.

Table 1. Line of Code in MapReduce version

Application Components Line of Code

Water Spatial
Original code 1984
Append code 2002

Interface and Framework 1226
Data storage and communication 776

Radix Sort
Original code 705
Append code 318

Interface and Framework 301
Data storage and communication 17

Porting Effort. Table 1 shows the porting effort to translate these two programs onto
the Hadoop framework. The original amount of code in MapReduce is 1984 lines. By
reusing most of the computation code, we still need to append other 2002 lines of code.
The major part of the extra code for Water Spatial is for the interface and framework
supports required by Hadoop-0.19.1. Data partition and distributed file system opera-
tions code also result in some extra code. The large number of code for framework is
caused by many similar routines to setup MapReduce jobs with different configurations.

Data sharing in memory are replaced with network communication on the MapRe-
duce cluster, which is also a source of extra code. As much more inevitable data dump-
ing and loading occur in this condition, the code for defining formats to store the data

Evaluating SPLASH-2 Applications Using MapReduce 459

structure is also needed in this non-sharing address-space environment. However, the
data format code for Water Spatial can be well reused by other scientific applications.
In contrast, Radix Sort needs almost no data communication between the consecutive
permutation steps. Most of its code is for Mapper and Reducer, making its porting quite
easy. By using a same algorithm design but different coding in Java, Radix Sort does
not reuse many original code, which are programmed mostly on dealing with memory
in C.

4 Evaluation

In this section, we present and analyze the experimental results of Water Spatial and
Radix Sort.

4.1 Experiment Setup

We conduct our experiments on a cluster consisting of 1 master node and 16 slave
nodes. We have single master node running Job Tracker and Name Node. All slavers
run as both Task Trackers and Data Nodes. Each slave machine has a dual-processor,
2GB main memory and a SATA disk. Network connectivity is by 100M/sec Ethernet
links connecting into the campus local network.

In our experiments for Water Spatial and Radix Sort, we evaluate the performance
characteristics of our MapReduce implementation. Its core computation algorithms are
the same as the original ones in SPLASH-2. We use Hadoop-0.19.1, the most recent ver-
sion of Hadoop and Java SE Runtime Environment 1.6 as our experiment platform. The
input size of Water Spatial experiments varies from 183 to 573, indicating the number
of molecules. The size of input data file for Radix Sort varies from 12.5MB to 100MB.

4.2 Overall Performance

Figure 8 and Figure 9 show the overall performance of these two applications. In both
applications, the scalability with input size demonstrated on cluster is poor.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

183 233 293 363 453 573

E
xe

cu
tio

n
T

im
e

(S
ec

)

Size of Input Data

Water Spatial

Fig. 8. The overall execution time of WS on
a commodity cluster

 0

 200

 400

 600

 800

 1000

 1200

12.5 25 50 100

E
xe

cu
tio

n
T

im
e

(S
ec

)

Size of Input Data (MB)

Radix Sort

Fig. 9. The overall execution time of RS on
a commodity cluster

460 S. Zhu et al.

 0

 200

 400

 600

 800

 1000

 1200

12.5 25 50 100

E
xe

cu
tio

n
T

im
e

(S
ec

)

Size of Input Data (MB)

Input

MapReduce

Output

Transform

Framework

Fig. 10. The execution time breakdown of RS
on a commodity cluster

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

183 233 293 363 453 573

E
xe

cu
tio

n
T

im
e

(S
ec

)

Size of Input Data

Input

MapReduce

Output

Transform

Framework

Fig. 11. The execution time breakdown of WS
on a commodity cluster

4.3 Performance Breakdown

The time breakdown of Water Spatial in Figure 11 presents the execution time spent in
different components of Hadoop. The overall time is divided into five parts. The Input
and Output parts count for the time spent for data reading/writing from/to HDFS for
Mapper/Reducer. The MapReduce part here stands for the time spent in the compu-
tation inside Mapper and Reducer, which execute as the core computation algorithms.
The Transform part denotes the data transformation time from the output of a MapRe-
duce job to the required format in the next step. The last part, Framework time, is the
time spent in MapReduce job creation, Hadoop scheduling and the map/reduce task ini-
tialization. The intermediate data transmissions are also accounted for the Framework
part.

From the time breakdown, we notice that time for computation in Mapper and Re-
ducer is negligible. This part does the major computation for the Water Spatial simu-
lation. And compared with the overall execution time in shared-memory environment,
time in this part has a speedup more than 2x. And this speedup shows the advantage
of parallel-computing in MapReduce for the general application without heavy loads of
data communication. On the other hand, the MapReduce framework causes much more
negative side-effects for the scientific application. From the figure, we notice the time
in Input part increases rapidly with the data input size. This is because our implemen-
tation has to scan through some data files more than one time in certain phases, such
as the inter-molecule phase and potential energy phase. Thus the network loads for this
part can increase much more quickly than that of the Output and Transform parts. The
molecule layout at the input size 293 is a little irregular. It can not be scanned sequen-
tially well and thus suffers a significant amount of HDFS cache miss. We can see that
the execution time at 293 is only sightly shorter than that at 363. The Framework time
grows with input size because of the increased transmission of intermediate data. As
Figure 10 illustrates, Radix Sort also spends most of its execution time on data commu-
nication. Because of its less data synchronization and simpler storage format, the Input
and Output time of Radix Sort is insignificant compared with the Framework time.

Evaluating SPLASH-2 Applications Using MapReduce 461

 0

 20

 40

 60

 80

 100

 120

183 233 293 363 453 573

E
xe

cu
tio

n
T

im
e

(S
ec

)

Size of Input Data

boundary
corrector
init
inter molecule
intra molecule
kineti
potential energy
predictor

Fig. 12. The execution time breakdown of WS
on a single machine

 0

 1000

 2000

 3000

 4000

 5000

 6000

183 233 293 363 453 573

E
xe

cu
tio

n
T

im
e

(S
ec

)

Size of Input Data

boundary
corrector
init
inter molecule
intra molecule
kineti
potential energy
predictor

Fig. 13. The execution time breakdown of WS
on a commodity cluster

4.4 Affects with Application Characteristics

With the breakdown time in Figure 12 and Figure 13, we further investigate the distri-
bution of time spent in different computation phase of Water Spatial. The computation
phases here are divided according to the program flow described in Figure 4. The time
of Water Spatial is mainly spent in inter-water force computing and potential energy
calculating. These are the only two phases involving the neighbor partitions of data.
Thus they are dominant in a whole run since their greater computation loads. The inter-
water force computing time is longer since it works as a mixed job in MapReduce while
potential energy calculating is an update-only job. And in the MapReduce version with
a large input size, time of other phases start to become obvious. This happens because
a large number of data communications is raised.

5 Optimization Opportunities

Storage System. The HDFS used in Hadoop framework is designed to work with reg-
ular data-intensive applications. Files in the HDFS can only be appended at the tail.
The in-place data updating cannot be supported or worked out with a simple alterna-
tive using existing approaches. By studying Water Spatial and Radix Sort, we found the
matrices and multi- or many-dimension arrays are the most common structure used to
hold data. Frequent update operations on these kinds of structures result in quiet a lot
of overhead in reconstruction. The dumping and loading from arrays or matrices force
other extra efforts to be done. The large proportion of HDFS time showed in our exper-
imental results of Water Spatial just verifies that. Considering the native characteristics
of supercomputing applications, a specific lower-level storage system is necessary. And
good support to distributed arrays and matrices access will lead to a great improvement
on data communication. The general-purpose distributed storage system or sequential
file system cannot work well with those structures.

Output Directing. In supercomputing applications, work completion by multiple
MapReduce jobs causes another performance problem. The output from previous job

462 S. Zhu et al.

needs to be dumped onto HDFS. Such data is then read by tasks from the next job.
The indirect data transmission costs a large fraction of execution time. Actually, before
dumping the output, tasks for the coming jobs have already been scheduled. Allowing
output written directly to its destination can save the time writing to HDFS. This avoids
a great waste of network resource and also saves the time significantly.

Simple Aggregation Function. Simple aggregation operation in a supercomputing ap-
plication, like sum of variables, is also a common kind of computation. For a global ag-
gregation function computed, the number of reduce worker has to be one, which forms
a bottleneck during the processing. However, the overhead from passing a variable to
sum is negligible compared to the creation time of a heavy reduce worker. Note that,
a functional enhancement should be augmented. It should allow pass the variables for
simple aggregation directly to the application submission end and skip the unnecessary
reduce phase. Thus quite a lot of time caused by framework during the reduce phase
and its corresponding HDFS operations could be saved.

Multi-Phase in Single Pass. The mixed job we introduced often leads to a difficult
situation for programming. Thinking of the element update and variable sum in the same
pass in Water Spatial, fake elements are created for carrying aggregated variable. In
most cases, several operations on the same partition of data are independent during the
same pass. Due to lack of support from the MapReduce framework, the operations have
to be separated apart or programmed with a bad understandability. A multi-functional
mapper for MapReduce can improve the working efficiency greatly. Furthermore, since
MapReduce cannot ensure the tasks processing the same partition to be assigned to the
same nodes, which causes many avoidable data communication.

6 Related Work

The evolvement of the MapReduce programming model, MapReduce, invented and
popularized by Google, has been widely deployed into the production systems inside
Google. Outside Google, Apache has designed and implemented Hadoop, an open-
source alternative of Google’s MapReduce, which is implemented using Java and built
upon the Hadoop Distributed File System (HDFS). Due to the simplicity of MapReduce,
the database community also extends the MapReduce programming model by adding
an additional stage, called Merge, to support the joint of two tables [13].

There have been a lot of efforts in trying MapReduce to other domains other than the
web-search domain. Chu et al. [14] proposed using MapReduce to run machine learning
algorithms on multi-core. Dyer et al. [3] also built the statistical machine translation
using MapReduce. Besides, Ekanayake et al. [15] applied MapReduce for scientific
data analysis. Specifically, they evaluated MapReduce with High Energy Physics data
analysis and K-Means clustering. Our work differs from the above ones in that we
studied in another domain of applications , supercomputing, on commodity clusters
and provided a more detailed study on their performance characteristics.

The prevalent of heterogeneous multi-core systems open opportunities to run
MapReduce originally for clusters in a signal machine. Ranger et al. [16] recently pro-
vide a MapReduce implementation, namely Phoenix, which runs on multi-core plat-
forms. Their implementation indicates that applications written using MapReduce, are

Evaluating SPLASH-2 Applications Using MapReduce 463

comparable in performance and scalability to their pthread counterparts. The popularity
of MapReduce is also embodied in running MapReduce on other heterogeneous envi-
ronments, such as on GPUs [17] and Cell [18].

7 Conclusion

MapReduce has been prevalent for running data-parallel applications without effort for
non-functionality parts. The features mentioned make the programming model popu-
lar in various domains like textual retrieval and machine learning. In this paper, we
ported and evaluated two typical scientific applications from the SPLASH-2 suite using
MapReduce. Based on a detailed study and analysis, we identified that the requirement
of frequent data communication in the kind of application results in a huge overhead on
network. Based on our experience, we also proposed several potential enhancements on
the MapReduce framework to make the model much more suitable for supercomputing
applications.

References

1. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commu-
nications of the ACM 51(1), 107–113 (2008)

2. Bialecki, A., Cafarella, M., Cutting, D., O’Malley, O.: Hadoop: a framework for running
applications on large clusters built of commodity hardware (2005),
http://lucene.apache.org/hadoop

3. Dyer, C., Cordova, A., Mont, A., Lin, J.: Fast, easy, and cheap: Construction of statistical
machine translation models with MapReduce. In: Proceedings of the Third Workshop on
Statistical Machine Translation at ACL, pp. 199–207 (2008)

4. Elsayed, T., Lin, J., Oard, D.W.: Pairwise document similarity in large collections with
mapreduce. In: Proceedings of the 46th Annual Meeting of the Association for Computa-
tional Linguistics, pp. 265–268 (2008)

5. Wolfe, J., Haghighi, A., Klein, D.: Fully distributed EM for very large datasets. In: Proceed-
ings of the 25th international conference on Machine learning, pp. 1184–1191. ACM, New
York (2008)

6. Bryant, R.: Data-intensive supercomputing: The case for DISC (2007)
7. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The SPLASH-2 Programs: Charac-

terization and Methodological Considerations. In: Proc. ISCA (1995)
8. Singh, J.P., Gupta, A., Levoy, M.: SPLASH: Stanford parallel applications for shared mem-

ory. Computer Architecture News 20(1), 5–44 (1994)
9. Lie, G., Clementi, E.: Moleculear-dynamics simulation of liquid water with an ab initio flex-

ible water-water interaction potential. Physical Review A33, 2679–2693 (1986)
10. Matsuoka, O., Clementi, E., Yoshimine, M.: CI study of the water dimer potential suface.

Journal of Chemical Physics 64(4), 1351–1361 (1976)
11. Barlett, R., Shavitt, I., Purvis, G.: The quartic force field of H2O determined by many-body

methods that include quadruple excitation effects. Journal of Chemical Physics 71(1), 281–
291 (1979)

12. Blelloch, G.E., Leiserson, C.E., Maggs, B.M., Plaxton, C.G., Smith, S.J., Zagha, M.: A com-
parison of sorting algorithm for the connection machine CM-2. In: Proc. SPAA (1991)

13. Yang, H., Dasdan, A., Hsiao, R., Parker, D.: Map-reduce-merge: simplified relational data
processing on large clusters. In: Proc. SIGMOD (2007)

http://lucene.apache.org/hadoop

464 S. Zhu et al.

14. Chu, C., Kim, S., Lin, Y., Yu, Y., Bradski, G., Ng, A., Olukotun, K.: Map-reduce for machine
learning on multicore. In: Advances in Neural Information Processing Systems: Proceedings
of the 2006 Conference, p. 281. MIT Press, Cambridge (2007)

15. Ekanayake, J., Pallickara, S., Fox, G.: MapReduce for Data Intensive Scientific Analyses.
In: IEEE Fourth International Conference on eScience, 2008. eScience 2008, pp. 277–284
(2008)

16. Ranger, C., Raghuraman, R., Penmetsa, A., Bradski, G., Kozyrakis, C.: Evaluating mapre-
duce for multi-core and multiprocessor systems. In: Proc. HPCA (2007)

17. He, B., Fang, W., Luo, Q., Govindaraju, N., Wang, T.: Mars: a MapReduce framework on
graphics processors. In: Proc. PACT (2008)

18. de Kruijf, M., Sankaralingam, K.: MapReduce for the Cell BE Architecture. University of
Wisconsin Computer Sciences Technical Report CS-TR-2007

	Evaluating SPLASH-2 Applications Using MapReduce
	Introduction
	Background
	MapReduce Programming Model
	The Hadoop Design and Implementation

	Implementing SPLASH-2 Applications with Hadoop MapReduce
	SPLASH-2 Suite
	Implementing Water Spatial(WS) and Radix Sort(RS) in MapReduce

	Evaluation
	Experiment Setup
	Overall Performance
	Performance Breakdown
	Affects with Application Characteristics

	Optimization Opportunities
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

