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Abstract—Computation outsourcing using virtual appliance is getting prevalent in cloud computing. However, with both hardware

and software being controlled by potentially curious or even malicious cloud operators, it is no surprise to see frequent reports

of security accidents, like data leakages or abuses. This paper proposes Kite, a hardware-software framework that guards the

security of tenant’s virtual machine (VM), in which the outsourced computation is encapsulated. Kite only trusts the processor and

makes no security assumption on external memory, devices, or hypervisor. Unlike prior hardware-based approaches, Kite retains

transparency with existing VM and requires few changes to the (untrusted) hypervisor by introducing VM-Shim mechanism. Each

VM-Shim instance runs in between its VM and the hypervisor, which only transfers necessary information designated by the

VM to the hypervisor and external environments. Kite also considers the high-level semantic of interaction between VM and

hypervisor to defend against attacks through legitimate operations or interfaces. We have implemented a prototype of Kite’s

secure processor in a QEMU-based full-system emulator and its software components on real machine. Evaluation shows that

the performance overhead of Kite ranges from 0.5%-14.0% on simulated platform and 0.4%-7.3% on real hardware.

Index Terms—Computer Architecture, Virtual Machine, Secure Processor, Cloud Computing, Security, Computation Outsourcing

✦

1 INTRODUCTION

The convenience, low price, and effectiveness of cloud

computing makes computation outsourcing more and more

popular. One common way of computation outsourcing is

encapsulating code and data in virtual machines (VMs),

aka. virtual appliance (VA) [2], and deploying the VMs on

IaaS (Infrastructure as a Service) cloud, such as Amazon’s

EC2. However, currently, outsourcing computation means

losing all of the control. A malicious cloud provider could

steal or tamper with tenants’ data, pirate or abuse tenants’

valuable algorithm, or even deliver wrong computing re-

sults. For example, an IC design company would like to

outsource the process of chip validation, which involves a

huge amount of computation, to the cloud. By doing so, the

company is facing three possible security issues. First, both

the data of chip design and algorithm of validation are top

secrets, which might be stolen from the cloud. Second, the

validation process should keep intact. A malicious cloud

provider may tamper with the process to generate a wrong

result. Third, the company may also want to host the

validation on the cloud and offer it as a service to other chip

designers, and charge them by the times of using. In this

case, a malicious cloud provider could conceal the times of

using or even abuse tenant’s service while the tenant has
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no way to prohibit.

Currently, the mainstream multi-tenant cloud providers

have very limited assurance on protecting the security of

tenant’s data or code. For example, the user agreement

of Amazon’s Web Services (AWS) explicitly states that

tenants are responsible to secure their contents [3]. Sim-

ilarly, Microsoft’s Azure cloud platform requires tenants

to encrypt their data before putting into the cloud [4].

However, encrypted data will be ultimately decrypted in the

cloud when being processed. Thus, it is no surprise that a

recent survey over 500 chief executives and IT managers

shows that they are reluctant to move their business to

cloud due to “fear about security threats and loss of control

of data and systems” [5]. Worse even, the threats are not

groundless but real. In 2010, Google fired their employees

for “breaking internal privacy policies” and causing “a

massive breach of privacy” in Gtalk and Google Voice [6].

Surprisingly, the privacy breach lasted for several months

before being detected.

There are two main reasons for such limited security

assurance. First, the hardware and software stack in multi-

tenant cloud, which usually adopts off-the-shelf hardware

and virtualized infrastructures, is notoriously large and

complex, which raises the possibility of security com-

promises on the virtualized stack. For example, among

hundreds of reported security vulnerabilities in hostless

virtualized infrastructures such as Xen and VMware, more

than a third of them cause a privilege escalation and

thus allow the adversaries to gain the control of a whole

machine [7]. Second, though typical cloud vendors do place

some physical (e.g., surveillance cameras and extra security

personnel) and software access control to cloud operators,

it is hard to strictly limit the behavior of cloud operators

as software and hardware maintenance (e.g., memory or

device replacement) of a cloud platform has become a
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daily work [8], [9]. Those curious or even malicious cloud

operators who can easily gain the full control of the cloud

may unrestrictedly inspect or tamper with tenants’ code

or data, by either physical [10], [11], [12] or software

attacks [7]. Furthermore, it is possible to recover data from

residues of off-power memory [10], [12]. This situation

will be even worse if the replaced memory has become

non-volatile (e.g., phase-change memory [13]).

With the whole hardware and software stack of a multi-

tenant cloud being controlled by cloud operators, tenants

will likely be forced to assume a strong adversary model

that trusts only a small part of the cloud. Existing software-

based approaches such as CloudVisor [14] remove the

hypervisor from the trusted computing base (TCB), but

cannot guard against physical attacks like bus snooping

and cold-boot attack[10]. Similar to CloudVisor, hardware

proposals including SecureMMU [15], H-SVM [16] and

HyperWall [17] leverage architectural support to enhance

the memory management units to isolate a VM’s memory

from the hypervisor 1. However, they require changes to

OS and cannot defend against physical attacks as well.

In order to further reduce the TCB size and protect

computation outsourcing even against physical attacks, in

this paper we propose a secure framework, named Kite, to

provide the tenants full control over the outsourced virtual

appliance. “Full control” here has three aspects: privacy,

integrity and control of execution. To ensure privacy and

integrity, neither the data nor the executing code could be

leaked to or tampered with by anyone other than the tenants

themselves. Control of execution means that the tenants

should be able to determine the way of execution of the

outsourced computation, e.g., execution quota, time period

constraint, revocation, etc.

Kite leverages both software and hardware to provide

strong and transparent VM protection in a multi-tenant

cloud. It adopts “secure tamper-resistant processor” on the

host platform, while assuming all other hardware compo-

nents (device and main memory) as untrusted to defend

against physical attacks. Unlike previous secure processor

based approaches which mainly focus on application-level

protection and require a non-trivial change of OS [18],

[19], [20], [21], or applications [22], or both, Kite aims

at protecting the entire VM without any modification to

the guest OS.

There are two major challenges to the design of Kite.

First, although the secure processor can protect the privacy

and integrity of code and data on the chip, it is not

expressive enough to capture and handle complex high-

level semantics between the processor and VMs, which is

known as semantic gap. For example, the processor has

no idea on which data should be transferred from guest

VM to the hypervisor for a particular scenario of trap-and-

emulate. Simply adding the related processing logic into

the processor will make it unacceptable complex, while

1. While the virtualization stack contains both a management VM, zero
or more driver VMs and the hypervisor, other than specially mentioned,
we uniformly call them all together as the hypervisor for presentation
clarity in this paper.

requiring guest OS to explicitly share interactive data with

the hypervisor leads to non-trivial modifications to both

software.

Second, in a virtualization environment, even if a secure

processor is used, a malicious hypervisor can still issue

attacks through legal cloud operations or hypervisor inter-

faces, like rollback attack [23], [24] or Iago attack [25].

For example, an attacker may launch a brute-force attack

to guess the login password of a VM. Even if the guest OS

has restriction on the number of failed trials (e.g., blocking

for a while after three times, or erasing all data after ten

times), the attacker can still infinitely rollback the VM to

an initial state after each trial to clear the counter inside the

VM and bypass the restriction. Another example is that a

malicious hypervisor may manipulate the entropy sources

(e.g., device events) to weaken the randomness of random

numbers used by guest VM, which can be used to further

break the TLS (Transport Layer Security) protection used

by the VM [23].

To bridge the semantic gap between a VM and the secure

processor while keeping the transparency of protection, Kite

takes a novel approach that lets the secure processor provide

security-enhancing mechanisms, while leaving the handling

of most virtualization-specific semantics in a small piece of

software, named VM-Shim2. Kite provides both hardware

support for running VM-Shim and a specification of in-

teractive data for communication between the hypervisor

and VM-Shim. The implementation of VM-Shim software

can be various as long as it follows the specification.

It also has small code size thus is amenable for formal

verification. The VM-Shim software could be implemented

by the processor manufacturer, a third party open source

organization, or even the tenants themselves.

To protect the execution of guest VMs and defend against

rollback attack and Iago-like attacks, we investigate all the

VM operations and the semantic of virtualization interface,

analyze the attack surface and possible exploits, and pro-

pose several defending technologies. We introduce secure

logging mechanism to make VM operations auditable, and

sealed policies mechanism by leveraging condition servers

to enforce tenant-defined policies to control the execution

of VM. We also show possible Iago-like attacks and defense

solutions.

To demonstrate the applicability of Kite, we have im-

plemented a prototype in a QEMU-based full-system em-

ulation environment with the Xen VMM (Virtual Ma-

chine Monitor). The VM-Shim consists of around 1,200

LOCs (Line-Of-Code) and requires modification around

430 LOCs to the VMM, which shows that the VM-Shim

can be easily implemented with modest code size. The

performance measurement shows that the overhead is small.

In summary, this paper makes following contributions:

• The first hardware-software framework that achieves

full-control of outsourced computation by tenants

2. Shim is common software mechanism for application adaptability in
computing [26], we use the name VM-Shim as it adapts a VM to Kite
without the requirement to change the guest OS.
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through transparently protecting guest VMs against an

untrusted hypervisor and even physical attacks.

• The VM-Shim mechanism that provides a scalable and

transparent approach to protecting VMs on commer-

cial off-the-shelf virtualization stack.

• The mechanism that offers cloud tenants the full

control over the execution of outsourced computation.

• A prototype implementation and evaluation in both a

QEMU-based full-system emulation environment and

real hardware platform with the Xen VMM, which is

demonstrated with low performance overhead.

2 BACKGROUND AND RELATED WORK

2.1 Securing Computation Outsourcing

Previous research on securing computation outsourc-

ing usually focused on proving the correctness of the

computation, by using technologies such as computation

verification [27], [28]. Such methods usually focused on

specific domains, e.g., biometric comparison [29], encryp-

tion algorithm [30], algebraic computation [31], [32], etc.

Fully homomorphic encryption scheme is another hot topic

in this area [33]. However, the performance overhead is still

the most significant limitation. There are also some other re-

search focused on securely outsourcing data storage without

losing control [34], [35], [36]. In this paper, we use virtual

appliance as the way to outsource general computation, and

ensure the security of such computation by protecting its

privacy, integrity and the control of execution.

2.2 Virtualization & VM Protection
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Fig. 1: Hardware-Assisted Virtualization

Hardware-assisted virtualization [37] has now been a

standard feature in desktop and server platforms. For exam-

ple, x86 processor virtualization introduces a “host mode”

to run hypervisor and a “guest mode” to run VMs. When

a VM executes a privileged operation, it gets trapped from

guest mode to host mode, which is called a “VMEXIT”.

The hypervisor then handles the VMEXIT according to

different exit reasons, e.g., I/O operations, privilege instruc-

tions execution. Then it resumes the trapped VM by issuing

VMENTER instruction. Figure 1-a shows the process. To

encapsulate a VMs CPU context, there is also an in-

memory VM control structure (VMCS) for each virtual

CPU, which encapsulates the CPU context for both the

VMs (VM context) and the hypervisor (hypervisor context).

The VMCS is saved by processor during VMEXIT and is

used by the hypervisor to handle the VMEXIT and resume

a VM’s execution. Figure 1-b shows the address translation

process in virtualized platforms. Guest application uses

guest virtual address (GVA), which is translated to guest

physical address (GPA)3 through a VM’s page table. GPA

is further translated to host physical address (HPA) through

extended page table (EPT) maintained by the hypervisor.

GPA is a continuous memory space from a VM’s perspec-

tive, but can be mapped to discontinuous HPA space.

The commercial success of virtualization and multi-

tenant cloud and the lack of security guarantees for tenant’s

data have generated considerable interests to the research

community to improve the cloud trustworthiness and secu-

rity. On the software side, NoHype [38] advocates space-

partitioning cores, memory and devices to a VM, detaching

the virtualization layer during a VM’s normal execution

time. This reduces the attack surfaces for a VM as the VM

is physically isolated from other VMs as well as the man-

agement VM for most of the time. Compared to NoHype,

Kite assumes a stronger adversary model that further con-

siders physical attacks, while NoHype only considers soft-

ware attacks and cannot guard against sophisticated attacks

such as inspecting a VM disk, bus snooping and memory

freezing. Further, Kite still retains most functionalities in

a commercial hypervisor like time-multiplexing resources,

which are currently absent in NoHype. CloudVisor [14]

separates the security protection from resource management

and leverages a tiny nested hypervisor to encrypt and check

the integrity of VMs. Excalibur [39] enables sealed-policy

data abstraction by leveraging nested hypervisor to check

the running context before data being used. However, these

systems do not defend against physical attacks and still

require means to secure the nested hypervisor, which may

suffer from single point of security failure.

On the hardware side, H-SVM [16] and HyperWall [17]

also separate the management of memory resources from

the security protection, but without the need of a nested

hypervisor. Instead, H-SVM uses microcode programs in

hardware to enforce memory protection. HyperWall intro-

duces CIP (Confidentiality and Integrity Protection) tables

to do memory isolation. However, they require non-trivial

changes to the guest OS as well as the hypervisor. Both

systems store plain text data in memory and thus are vulner-

able to physical attacks. Finally, major cloud maintenance

operations like VM snapshot/restore are disabled since the

hypervisor cannot access any protected memory. Live VM

migration must be done with the assistant of guest OS,

which needs further modification of the guest OS.

Similar to prior H-SVM and HyperWall, Kite also as-

sumes an untrusted hypervisor. However, Kite does not

trust the external memory or devices and uses memory

encryption and integrity verification to protect off-chip

data. Further, Kite captures complex VM interactions and

3. In this paper, we denote the guest physical address as the pseudo
physical address seen by the guest VM, and the host physical address as
the real physical address in a machine.
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data exchanging in a VM-Shim to retain OS transparency.

Finally, Kite is designed to still support existing cloud

maintenance operations (section 6.1).

OS Trans- TCB Size Phys. Cloud

parent Attk. Func.

HyperWall No CPU + Mem + IOMMU No Part

H-SVM No CPU + Mem + IOMMU No Full

CloudVisor Yes HW + CloudVisor (5.5K LOC) No Full

Kite Yes CPU + VM-Shim (1.2K loc) Yes Full

TABLE 1: Comparison of Related Systems

Similar to Kite, Overshadow [40] also leverages the con-

cept of shim [26], but mainly uses it to adapt the semantics

of system calls between a hypervisor and guest OSes,

which is much more complex than the VM-Shim in Kite.

Further, the shim mechanism in Overshadow is OS-specific

and requires completely different shim implementations for

different OSes. In contrast, the VM-Shim mechanism in

Kite is portable among different OSes and is much simpler.

2.3 Secure Processor

Secure processor has been extensively studied during

the last decade [18], [19], [20], [41], [42], [43], [44],

[45], [46], [47], [22], [21]. For example, Bastion [22] and

SecureME [21] also leverage secure processor to protect

against hardware attacks. However, they both need to

trust the hypervisor, while Kite only trust the processor

chip. Further, unlike Kite, they break application/OS trans-

parency in requiring either non-trivial OS modification [21]

or refactoring applications into modules for protection. In

contrast, Kite retains OS and application transparency by

leveraging the VM-Shim mechanism. For secure processor

designs, we adapt two major techniques: AISE (Address

Independent Seed Encryption) based data encryption and

Bonsai Merkle Tree (BMT) [45] to secure off-chip data.

Briefly, AISE and BMT are used to ensure privacy and

integrity accordingly. More details could be found in [45].

2.4 Threat Model

In Kite, neither the virtualization software stack nor

physical environment is trusted, as well as the interface

between the hypervisor and VMs, resulting in a strong

adversary model and a minimized TCB. We also consider

a malicious cloud operator who is able to control the

execution of a VM, including booting, rebooting, suspend-

ing and resuming at any time. However, there are three

kinds of attacks that are not considered in this work. First,

an adversary may still have the opportunities to subvert

a VM by exploiting the security vulnerabilities inside a

VM. How to harden the VM itself is out of the scope

of this paper. Second, Kite provides no guarantee on the

availability of deployed virtual appliances, which means

that a tampered or abused hypervisor might be able to

provide degraded or wrong services to a tenant VM, or

even refuse to serve tenant’s VMs. Third, we do not try

to prevent side-channel attacks in the cloud [48], [49],

which are usually hard to deploy and have very limited

bandwidth to leak information. However, Kite ensures that

an adversary controlling a subverted VM cannot further

break other VMs through the tampered hypervisor or even

abused hardware.

3 DESIGN OVERVIEW

Figure 2 shows an overview of Kite. Kite contains

three parts: the first part (section 4) leverages traditional

secure processor technology and extends it to support

virtualization environment. Different VMs are isolated with

each other since they use different encryption keys. Kite

uses AISE for encryption, BMT for integrity check, and

introduces VM-Table for multiplexing. Tagged-cache and

EPT protection are proposed to protect the security of

memory mapping within and between VMs.

The second part of Kite (section 5) is a hardware-

software mechanism named VM-Shim, which is introduced

to retain OS transparency and only reveals necessary in-

formation of VM to the hypervisor. VM-Shim is further

composed of two aspects: 1) hardware support to enable

control interposition between the hypervisor and VMs, and

2) a specification of interactive data between the hypervisor

and VMs, which contains CPU context, I/O data and aux-

iliary information. The hypervisor and VM-Shim instance

use the specification to communicate with each other. The

software implementation of VM-Shim only depends on

the specification. Meanwhile, the hypervisor does not need

to trust the software of VM-Shim since each VM-Shim

instance runs with the VM and is isolated from each other.

The third part of Kite (section 6) aims to ensure the

control of VM execution. In order to defend against control-

flow attacks such as VM rollback attack and service

abusing, while retaining normal VM operations, Kite uses

secure logging to allow the tenant to distinguish between

benign and malicious operations to detect rollback attack.

It also introduces sealed-policies, which are tenant-defined

code in virtual appliances to update and check execution

conditions, to precisely control the execution of VMs or

even revoke them from the cloud.

The TCB of Kite contains only the secure processor and

the VM-Shim. The processor which can be easily verified

by its public key through a well-known certificate authority.

The VM-Shim can be verified by its source code, or be

provided by the tenants. It is the tenants’ responsibility to

update their VM-Shim implementation by recreating and

redeploying the entire VM images including the new VM-

Shim. The tenants don’t need to trust any software compo-

nent from the cloud provider. It also maintains backward

compatibility to guest OS and requires minor change to the

hypervisor.

4 ARCHITECTURAL SUPPORT

4.1 Secure Processor Integration

AISE and BMT for Memory Protection: Kite adopts

AISE and BMT to protect memory due to their low

overhead (as mentioned in section 2.3). One difference from
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New Instruction Environment Instruction Semantic

vector install, addr1, addr2 Hypervisor Install vm key (addr1) and vm vector (addr2). Return VMID. Update hash in NVR-1

vector uninstall, VMID Hypervisor Remove the vm vector indexed by VMID from the VM-Table

vector dump, VMID, addr Hypervisor Encrypt the vm vector indexed by VMID and store it to memory. Update hash in NVR-1

ept st, addr, val Hypervisor Update data in EPT memory. Invalid cache only if an GPA 2 HPA mapping is modified or deleted

nvr1 get, val, addr Hypervisor Use the val as a nonce to XOR with the NVR-1, sign the result with PKcpu and write it to addr

VMENTER (modified) Hypervisor Resume VM-Shim instead of the VM

VMEXIT (modified) Guest VM Transfer control to VM-Shim instead of the hypervisor

raw st, addr, val Shim/Guest Store data into memory without encryption

raw ld, enc on, addr Shim/Guest Load data without integrity check. Use enc on to control encryption engine on or off

rand gen, reg Shim/Guest Generate a random number and put it into the reg

shim to host Shim Trigger VMEXIT and switch to host mode

shim to guest Shim Switch to guest mode and resume VM

TABLE 2: New Instructions in Kite

Key Context Protection

Kvm per VM Encrypt VM memory and disk image

Kmem per Chip Encrypt CPU reserved memory

SKcpu/PKcpu per Chip Private/public key pair of a CPU

SKapp/PKapp per VM Private/public key pair of a VM

TABLE 3: Keys involved in Kite

traditional AISE and BMT is that in Kite the processor

uses GPA to index counters and hash values, instead of

using HPA, since the memory of a VM is not physically

continuous. Although a malicious hypervisor has the con-

trol over mapping from GPA to HPA, it still cannot tamper

with guest’s data, counter or hash because the root of the

BMT is securely protected, as shown in figure 3. We add

a per-core guest-TLB (g-TLB) tagged with VMID to assist

address translation of hashes and counters from GPA to

HPA, to avoid affecting the main TLB.

CPU Context Protection: CPU context is also properly

protected when execution transfers from a VM to the hy-

pervisor or other VMs. The processor encrypts the context

data and leverages hash to protect its integrity, thus the

hypervisor cannot access or tamper with VM’s context.

One exception is the virtual interrupt vector field, which

is used to deliver interrupt from device to VM. For other

fields, VM-Shim will offer minimal necessary fields of

CPU context to the hypervisor, according to the semantics

of different VMEXIT reasons, which will be detailed in

section 5.2.1.

Tagged-cache for Inter-VM Cache Isolation: Since

data is not encrypted inside on-chip cache, it might be

vulnerable to inter-VM remapping attacks. A malicious VM

can map some physical memory of a victim VM (with the

help of a malicious hypervisor) and access the data with

a cache hit, thus bypasses the encryption engine. In Kite,

each VM is assigned a unique VMID, and each cache line

is tagged with its owner’s VMID. This ensures that a VM

can only access cacheline with its own tag. VMID is the

index of a VM in VM-Table, as stated in section 4.2.

EPT Protection for Secure Address Mapping: The

extended page table (EPT) of VMs are fully controlled

by the hypervisor for memory management. However, a

malicious hypervisor may issue intra-VM remapping at-

tack by changing GPA to HPA address mapping without

invalidating cache. Thus, if the mapped data is in cache,

no integrity check will occur and the memory integrity of

the VM is violated. Kite addresses this issue by mandating

that all the EPTs are stored within a specific memory

region named EPT memory. A new instruction, ept st, is

introduced as the only way to modify EPT memory, which

triggers cache invalidation when GPA to HPA mapping

is changed. We observed that hypervisor usually updates

the entire EPT table in a batch, before flushing TLB
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to enable the new mapping. To avoid unnecessary cache

invalidation, e.g., during VM launching and destroying,

Kite delays invalidating cache when updating TLB. When

the hypervisor is modifying EPT using ept st, the processor

sets a bit flag to indicate that EPT has been updated.

Each time there’s a TLB miss or TLB flush, the processor

invalidates cache if the flag is set, and then clears the flag.

Nevertheless, EPT updates are rare during VM execution.

4.2 VM-Table for Multiplexing

Each VM has an entry in VM-Table that contains infor-

mation necessary for AISE and BMT engines:

• VMID is a unique identifier for each VM, which is

the index of VM slot in the VM-Table. The range of

VMID is large enough for the number of running VMs.

• Kvm is the encryption key for that VM during runtime.

• vm vector, which includes following items:

– Hmem is the root hash of the VM’s BMT.

– Hctx is the hash of the CPU’s context of the VM.

– Addrcnt and AddrBMT are starting addresses

(GPA) of counters and BMT in memory.

– Addrshim is the starting address (GPA) of VM-

Shim.
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Fig. 3: The root hash of guest BMT is stored in VM-Table.

VM-Table is in CPU-reserved memory region, whose root

hash is stored on-chip.

In our design, the VM-Table is stored in a CPU-reserved

portion of physical memory, which is also protected by

AISE & BMT. This portion of memory is accessible only

to the secure processor itself. A separated key, Kmem, is

used for encryption and BMT, which is generated randomly

when the processor is powered on, and is securely stored

inside the processor. Since the VM-Table contains root

hashes of VMs’ BMT, it further ensures the integrity of

VMs’ memory space, as shown in figure 3. By using

memory to store the VM-Table, we can save expensive

on-chip storage. Meanwhile, the number of VMs running

concurrently can be proportional to the memory size.

We also introduce on-chip cache for VM-Table entries

to optimize the performance. Three new instructions are

introduced to operate on the VM-Table, i.e., vector install,

vector uninstall and vector dump, as listed in table 2.

More details of the VM operations will be described in

section 6.1.

4.3 Summary of Architectural Extension

The architectural support of Kite includes the integration

of secure processor with existing hardware virtualization

mechanism, as well as the VM-Shim support. This section

presents the former part, while the VM-Shim part will be

described in next section.
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Fig. 4: Hardware/software Modifications for Kite

Figure 4 shows the hardware and software components

of Kite. The secure processor substrate includes AISE

encryption engine A© and BMT engine B©. Counter data

is accessed through split counter cache C©, while hash data

shares cache with ordinary data. Each cache line D© E© is

tagged with VMID of its owner VM, and data in a cache

line can be accessed only by its owner. Since both counters

and hashes are indexed by GPA, a g-TLB F© is added to

optimize address translation from GPA to HPA.

A VM-Table is introduced to store protection information

of currently running VMs. Each entry contains {VMID,

Kvm, Hmem,Hctx, Addrcnt, AddrBMT , Addrshim}. The

VM-Table is stored in a CPU protected memory region G©,

and most recent used entries are cached on chip H©.

Three new instructions, vector install, vector dump and

vector uninstall are introduced to operate the VM-Table.

The EPT memory I© is used to store EPT, and can only be

modified by ept st instruction, which triggers invalidation

of cache when address mapping is changed to defend

against intra-VM remapping attack, as stated in section 4.1.

The invalidation is delayed to TLB update J© for optimiza-

tion.

Registers K© of Kite include two non-volatile registers

(NVR). NVR 0 is used for generating LPID to ensure that

LPID is unique for each page, even after system rebooting.

NVR 1 is used for logging that gets updated every time

a VM is booted/resumed or a snapshot is made, triggered

by vector install and vector dump, respectively. Kite also

adds an engine for random number generation L©, which
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is used by the new instruction rand gen. All of the new

instructions M© are listed in table 2.

In order to support the VM-Shim mechanism, the logic

of mode switching N© is changed to enable VM-Shim

running in-between the hypervisor and a VM. In addition,

two new instructions are added to switch mode from VM-

Shim to host or guest, by shim to host and shim to guest,

respectively. VM-Shim O© is responsible to exchange data

between the hypervisor and VMs, by using two new instruc-

tions: raw ld and raw st. Meanwhile, the hypervisor Q©
needs to be modified to access guest’s data through the

interface provided by VM-Shim. Thus the guest OS can

remain unchanged.

5 VM-SHIM MECHANISM

5.1 VM-Shim Mode

VM

VM-Shim

Hypervisor

VM

VM-Shim

Hypervisor

VM

VM-Shim

Hypervisor

VM-Shim

a) Exception in VM b) Interrupt in VM c) Exception in VM, then 

interrupt in VM-Shim

Fig. 5: VM-Shim Interposition

A VM-Shim has its own running context. It shares the

same Kvm and BMT with the corresponding VM and can

access the CPU context and all the memory of the VM. It

also reserves a memory region that the VM cannot access.

A VM-Shim has no permission to read or write memory

of other VMs or VM-Shims. In order to enable data

exchanging between VMs and the hypervisor, Kite provides

two new instructions: raw ld and raw st, as described in

table 2.

A VM-Shim interposes the control transition between a

VM and the hypervisor. Adding a “man-in-the-middle” also

introduces the reentry issue. For example, if a hardware

interrupt occurs when a VM-Shim is running, the processor

will enter the same VM-Shim again. One way to handle

this is disabling hardware interrupt when a VM-Shim is

running. However, as a VM-Shim runs in the context of

a VM, it should not be granted with the privilege to turn

on/off CPU interrupt. Otherwise, a malicious VM can easily

freeze the whole system by disabling all interrupts.

Kite solves this problem by dividing events causing a

VM trap into two cases: synchronous events caused by

exception, and asynchronous events caused by interrupt.

Figure 5-a shows the handling process of exception-caused

VMEXIT:

• 1©: The processor transfers control from a VM to its

VM-Shim.

• 2©: VM-Shim prepares the data needed by the hyper-

visor according to the semantics of different VMEXIT

reasons, and transfers control to the hypervisor through

shim to host.

• 3©: the hypervisor handles the VMEXIT, exchanges

data with VM through VM-Shim’s memory region if

needed, and issues VMENTER.

• 4©: the VM-Shim copies data from the hypervisor (if

any) to the VM’s memory space and CPU context.

Finally it resumes the VM’s through shim to guest.

More details on data interaction between a VM and

hypervisor is in section 5.2.

The second case is interrupt-caused VMEXIT. Since it

is an async event, in order to prevent the re-entry problem,

the processor skips VM-Shim, as shown in figure 5-b. Since

the VMEXIT is not caused by a VM, the hypervisor does

not need the guest’s information. However, it may still

deliver a virtual interrupt to a VM by setting flags on

guest’s virtual interrupt vector, which is a part of the VM’s

CPU context. As we mentioned in section 4.1, the virtual

interrupt vector is not protected, thus the hypervisor can

modify it directly. A malicious hypervisor could not issue

attack through virtual interrupt vector, since the semantic

of the field is limited.

Once an interrupt-caused VMEXIT occurs when VM-

Shim is running, as shown in figure 5-c, the processor

will save the context of VM-Shim (step 2©) and trans-

fer control to the hypervisor. When hypervisor finishes

handling VMEXIT, it resumes the VM-Shim from where

it is interrupted (step 3©), then the VM-Shim continues

execution as normal. The steps 4©, 5© and 6© in figure 5-

c are similar as steps 2©, 3© and 4© in figure 5-a, corre-

spondingly. Meanwhile, the VM-Shim itself will not trigger

exceptions itself. First, the VM-Shim avoids to use any

privilege instructions that would cause VMEXIT. Second,

the hypervisor must pin the memory used by the VM-Shim

to avoid page fault. Double fault will be treated as fatal

error.

5.2 Interactive Data Specification

When a VMEXIT occurs, the VM needs to provide the

hypervisor minimal yet sufficient information to correctly

handle the VMEXIT. When the hypervisor finishes, it sends

the results back to the VM. There are different types of

VMEXIT, each type requires different sets of interactive

data. The VM-Shim specification defines the data sets for

both the VM-Shim and the hypervisor as an interface. A

VM-Shim logically divides its memory into two portions:

a protected (encrypted) memory area and an unprotected

(plain) memory area that assists the interactive data. It uses

ld raw and st raw instructions to transfer data between the

two memory regions. The interactive data contains three

parts: CPU context, I/O data and auxiliary data.

5.2.1 CPU Context

Data in CPU context, including registers in VMCS and

general registers, cannot be accessed by the hypervisor
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directly. Instead, VM-Shim is responsible to exchange data

between the hypervisor and VM. For different types of

VMEXIT, VM-Shim only allows necessary context fields

to be accessed by the hypervisor.

5.2.2 Disk I/O

Data on disks is encrypted with the same way as that

in memory. Hence, no encryption or decryption is required

during disk reading or writing. However, to protect against

replay attack, VM-Shim needs to do integrity checking and

maintain the merkle hash tree to ensure the integrity of disk

I/O data. The hashes are stored in the same VM image file

with VM data. During VM booting, VM-Shim is required to

cooperate with the hypervisor to fetch all the hash value in

non-leaf nodes and keeps them in memory. During DMA

of disk read, the disk copies both the data and counter

into guest’s memory. The VM-Shim then uses ld raw with

decryption enabled, and checks the loaded disk data by

calculating its hash value.

5.2.3 Network I/O

Network I/O is handled differently from disk I/O as

Kite should not send an encrypted version of data to the

communicating peer (e.g., a web client), which usually

does not have the key to decrypt the data. As typical

security-sensitive applications usually do application-level

encryption like SSL, Kite, like other similar systems [14],

[40], does not protect data sent out through network.

VM-Shim interposes network I/O to exchange the data.

When data is read from a NIC device, it is first copied to

a shadow buffer in VM-Shim. The VM-Shim then loads

the data using the raw ld instruction to the VM’s buffer

based on the I/O request. When data is written to a NIC

device, VM-Shim uses the raw st instruction to send data

in plain-text.

Note that even for direct assignment or single-root I/O

virtualization (SR-IOV) NIC devices, current virtualization

hardware can still trap the I/O operations into the hyper-

visor. In Kite, a guest OS can also support SR-IOV by

developing a NIC driver for optimization. More specifically,

the driver of guest OS needs to be modified to use raw st

and raw ld instructions to exchange both meta-data (e.g.,

I/O command) and raw data between the processor and the

device. Thus the shadow buffer is not needed and the I/O

performance can be improved.

5.2.4 Auxiliary Information

There are cases where the data to be exchanged are

not present in the VM. For example, when a hypervisor

needs its VM’s page table entries to do address translation,

the VM’s page table entries might not be present. This

requires cooperation among the VM-Shim, the VM and the

hypervisor to handle such cases. In the followings, we will

use a relative complex instruction from x86 (e.g., rep ins io-

port mem-addr) as an example to show how the VM-Shim

handles it.

The instruction mentioned above repetitively load data

from disk to memory, with the repetition number being

indicated in the %ecx register, the disk I/O port being

specified in io-port and the starting memory address (in

the VM) in mem-addr. In most commercial hypervisors,

the I/O instruction will cause a trap to the hypervisor,

which gets the virtual address of the instruction pointer

(IP). Then the hypervisor needs to translate address of both

IP and the target memory address from GVA to GPA by

walking the VM’s page table. However, it is possible that

the target memory region starting from mem-addr might not

be aligned and might cross multiple pages. In this case, the

hypervisor needs to inject a page fault to the VM to let the

VM fill the translation.

The VM-Shim interposes the above process and ex-

change the data with the hypervisor. VM-Shim avoids the

need of guest page table walking for decoding the I/O

instruction by fetching the opcode in the VM context during

the trap. On interposing the VM trap, VM-Shim proactively

translates the mem-addr from GVA to GPA by walking

the VM’s page table. It then puts the plain-text version

of addresses to memory using st raw. If a translation

cannot be done due to the absence of page table entries,

VM-Shim just puts an invalid entry. When the hypervisor

starts to execute, it fetches the addresses VM-Shim puts. If

necessary address translation is absent, the hypervisor will

again inject a page fault to the VM, which will resolve the

fault and retry the I/O instruction. The retrying will again

trap to VM-Shim first, which can now do the translation and

put the obtained address translation to make the hypervisor

be able to emulate the I/O instruction.

Similarly, the VM-Shim exchanges a VM’s data to the

hypervisor and external environment according to the con-

text. It completely eliminates the need for the hypervisor

to access a guest VM’s memory and also makes it easy to

reason about each data interaction.

6 CONTROL OF VM EXECUTION

Controlling the execution of an outsourced computation

is a goal orthogonal to privacy and integrity of the com-

putation. In Kite, we address this problem by leveraging

two technologies. The first is secure logging supported

by the architecture, which aims to defend against rollback

attacks. It logs all of the VM operations in a safe way

and thus allows the tenant to distinguish between legitimate

VM operations and rollback attacks. The second is sealed

policies within a VM, which is used to prevent service

abusing. Such policies are implemented as a portion of code

by the tenants themselves that checks specific conditions

during the execution of the service, e.g., maintaining and

checking a counter to control the times of running, checking

current date to ensure not exceeding expiration period, etc.

The services will run only if all the checks pass. A tenant

can also leverage sealed policies to enable virtual appliance

revocation.

6.1 VM Life Cycle

This subsection introduces the life cycle of a VM as well

as all the legitimate operations. As mentioned in section 4,
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the life cycle of a VM depends heavily on the vm vector.

Kite offers new instructions to insert or remove a vm vector

into or from the VM-Table, or dump a encrypted vm vector

to memory for future use, as figure 6 shows. All the VM

operations, including bootup, shutdown, snapshot, restore

and migration, will leverage these new instructions.

vm_vectorOffline

Running

vector_install

vm_vector'

vector_uninstall

vector_dump

Fig. 6: VM life cycle. Vm vectors are encrypted by Kvm.

VM Deployment: Tenant deploys applications as virtual

appliances on untrusted cloud. When deploying, the owner

of the VM needs to offer following components, which are

generated offline by tenants using our provided tool:

• A disk image of the VM, which is encrypted as

section 5.2.2 described. The metadata of the disk

includes the starting address of the counter zone and

hash zone.

• An initial memory image of the VM. The image

contains logic of VM-Shim and is formatted by gen-

erating counters and BMT and encrypting the data

part using Kvm. The memory image also contains the

root hash of BMT of the disk in the VM-Shim. A

wrong formatted or tampered image will be denied by

a secure processor.

• A context of the processor, which contains the program

counter pointing to the first instruction to be executed.

• A vm vector, which is encrypted by Kvm. The vector

summarizes the initial VM memory image and is used

by the processor to verify the image. It also contains

the hash of CPU context, as shown in figure 7.

• Kvm, which is encrypted by the SKcpu of host chip.

VM Disk

HdiskCPU Regs

Shim Memory Other Memory

vm_vector

......

Secure

Processor

VM

Memory

Context

HmemHctx...

H H ' NVR-1

Fig. 7: The vm vector contains the hash of CPU context,

and the root hash of memory that further contains the root

hash of the disk image

VM Bootup: The process of VM booting includes

following steps:

1) The hypervisor allocates memory pages for the VM,

initializes its page tables, and loads the VM’s initial

memory image into the allocated pages.

2) The hypervisor invokes vector install instruction and

passes the encrypted Kvm and vm vector as argu-

ments.

3) The secure processor allocates a slot in the VM-Table,

and decrypts the Kvm and vm vector into the slot. It

then returns the slot index as VMID to the hypervisor.

4) The hypervisor then issues VMENTER with the

VMID to start the VM. The CPU context is also

provided as the parameter of VMENTER.

Now, all the essential information for booting the VM are

now ready. Since the BMT root hash of the disk image is

already in the memory of VM-Shim, each disk read can be

checked to ensure disk data’s integrity.

VM Shutdown: When a VM is shutting down, the guest

OS does not have to zero all the memory pages, since

they are encrypted already. The VM-Shim will then enter

a function to reset its status, and prepare to go to the

initialization code at the next VMENTER. After that, the

hypervisor will execute vector dump to get the vm vector,

and dump the memory including VM-Shim. Finally, it

needs to execute vector uninstall to revoke the slot of

VM-Table. Next time, when the hypervisor boots the guest

VM, it has to use the vm vector, the memory dump, the

corresponding disk image. In order to tolerate abnormal

shutdown, such as those caused by power outage, the cloud

provider needs to maintain at least one available set of the

disk, vector and memory image.

VM Snapshot: When a hypervisor takes a snapshot of a

VM, the process is similar with VM shutting down. It first

saves the VM’s current CPU context, memory data and

disk data, all in cipher-text, then issues vector dump to get

the VM’s vm vector, which is encrypted by the Kvm. The

vm vector is later used to restore the snapshot by using

vector install, similar as booting a VM.

VM Restore: The VM restoring process is the same as

the process of VM booting from the hardware’s perspective.

The hypervisor also needs to prepare the disk, memory

image, CPU context and the corresponding vm vector.

VM Migration: VM migration is similar to a combina-

tion of snapshot and restore. The target machine has already

got the Kvm of the VM, which is encrypted using the chips’

SKcpu in advance. Thus, it can execute vector install to

install the encrypted vm vector. The key distribution is

done offline by the VM owner so that no key exchange

is needed. A target machine is trusted if and only if it

has the encrypted Kvm. The VM migration is done by the

hypervisor without any involvement of VM-Shim.

6.2 Secure Logging

Secure logging is introduced to defend against rollback

attacks. First, we define a running epoch of a VM as a

period that starts from booting or resuming and ends with
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shutdown or suspending, as shown in Figure 8. The under-

lying secure mechanism assures following two properties:

• Starting a VM from the middle of an epoch is forbid-

den.

• All the beginning and end of each epoch are safely

logged.

By defining and logging the running epoch of VM, the

rollback process is auditable. A tenant can analyze the log

to detect rollback attack, or to constrain the behavior of

cloud providers to prevent rollback attack.

 sched out in

VM boot/resume VM shutdown/suspend

timeslice timeslice timeslice timeslice

running epoch

boot/resume

schedule in/out

VM crash / power off

out in out in

� � �

� � � 

time

� 

� logged rollback

forbidden rollback

shutdown/suspend

Fig. 8: Running Epoch of VM

The first property is ensured by the protection of pro-

cessor context, as described in section 4.1. The hypervisor

cannot change the program counter of a context, thus cannot

change the control flow of a running VM. Otherwise, the

processor will generate a warning if the hash of context

doesn’t match, and stop working.

To make the log tamper resistant, we leverage the secure

processor to protect its integrity. Each VM operation will

involve either vector install or vector dump. Each instruc-

tion will accumulate the hash of the vm vector involved to

the NVR-1 register, as shown in figure 7. The hypervisor

is responsible to log all of the operations and vm vectors

involved. Thus, the tenant can recalculate the hash of the

vm vectors to check the integrity of the log.

Because a VM can be migrated or cloned to different

physical machines, the log may be distributed on multiple

machines. A malicious cloud operator may hide some

log from tenant, which may contain evidence of rollback

attacks. In order to keep the integrity of the entire log set,

we need to record all the physical machines that have ever

hosted the VM. Fortunately, the tenant has already had the

set of hosts since at the deploying phase, the tenant needs

to prepare one encrypted Kvm for each processor with its

public key.

6.3 Sealing Policies in VM

In order to control the execution even after being out-

sourced, a tenant needs to seal some policies into the VM.

Before a service beginning to run, the VM will first check

to ensure that all the conditions specified by the policies

are met. A condition could be a period, a counter, a simple

flag, or any other ones defined by the tenant. The conditions

cannot depend on the host machines, which are not trusted.

Thus, we introduce the trusted condition servers, which are

either deployed publicly such as CAs (Certificate Authority)

or deployed by the tenants themselves in a safe place. The

deployment is illustrated previously in figure 2-c.

There are two types of condition servers, one is read-

only and the other is read-write. A read-only server is used

to offer some information, such as the current time, as a

condition. A read-write server could be used to save the

status for each VM, and update the status according to the

execution dynamically, e.g., a counter or a flag. In order

to use the read-write server, a VM needs to register itself

before making any request. Each VM has its own pair of

public key and private key for attestation and identification.

During the registration phase, a VM identifies itself with its

public key, and asks for a condition. The server will allocate

corresponding resource for the VM and accept requests

from it.

{IDAPP, IDCond, N} SKAPP

{Cond, N} SKCondSrv

Cond OK?

{Update Cond, N' } SKAPP

{CondNew, N'} SKCondSrv

Virtual 

Appliance

Condition 

Server

Stop

No

Yes

Process

{IDAPP, IDCond, N} SKAPP

{Cond, N} SKCondSrv

Client

Receive Input

Send Output

Cond OK?

Stop

No

Yes

Fig. 9: Attestation communication protocol with condition

servers

The process of condition check is shown in figure 9. As

the figure shows, there are two checks for each processing,

one is before the service starting, the other is before sending

results to clients. The second check could ensure that no

output will be delivered to clients if the condition is not

met. However, a malicious cloud may issue timing channel

attack by measuring the execution time of the service to

infer some results. The first check could mitigate such threat

by refusing to execute in the beginning.

Each check request contains the application ID, condition

ID and a nonce generated by the new instruction rand gen.

The request is signed by the private key of the application.

The condition server will then reply with the current

condition and nonce in order to prevent replay attack. The

reply is also signed by the server. The VM will update the

condition and will not run the service unless the update is
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confirmed.

The sealing policies mechanism relies on the integrity of

VM’s control flow, which is ensured by the architectural

support and secure logging. It also assumes that the condi-

tion servers are trusted and available. This mechanism can

be used to implement following scenarios:

• Lease-based execution: The tenant seals a policy in

the VM to check the current time, and continue the

execution only if the time is before some threshold.

• Counter-based execution: The VM increase a counter

for each execution, and check the counter to ensure it’s

less than a preset threshold. The counter is saved on

a trusted counter server.

• VM revocation: The tenant adopts a condition server

at a trusted place. The VM is sealed with a policy that

check a flag on the condition server every time it runs

a service. The tenant can easily revoke the VM as long

as the flag is cleared on the condition server.

7 APPLICATION: OUTSOURCING CHIP VAL-
IDATION ALGORITHM

This section revisits the case of outsourcing computation

of IC chip validation algorithm mentioned in the first sec-

tion and see how Kite can retain full control to the tenant.

We assume that the validation algorithm is encapsulated in

VAs that are deployed on Kite. The tenant also offers the

validation as a service to other clients, and charge them by

the times of service running. We also assume that a trusted

counter server is available, and the VMs has sealed a policy

that increases the counter every time the service is used.

A malicious operator may try to steal the algorithm and

chip design data from the VM, or modify the algorithm to

deliver a misleading result. In Kite, a hypervisor is able to

access all of a VM’s memory data. However, it can only

get cypher-text and will cause BMT checking error if it

tampers with the data. Meanwhile, since the data in memory

is encrypted, the system can also defeat physical attacks that

access memory directly, e.g., sniffing system bus or even

using offline methods such as cold-boot attack. It is noted

that even if an attacker has an emulator of the processor

and run the whole VM image on it, the VM’s data is still

safe as long as the private key of processor is not obtained.

A malicious hypervisor may swap a VM’s data from

memory to the disk, tamper with the data, and swap back

to memory. This attack can be defeated since the BMT

protection is in the space of guest physical address, which

means that a data block is protected by the BMT no matter

it is in memory or disk.

One possible attack is inter-VM remapping attack, which

can be made by a hypervisor with a collusive VM. Since

data is decrypted in cache, a malicious hypervisor may map

a VM’s memory page to a collusive VM, and then expect

a cache-hit when the bad VM accesses the page and thus

bypasses the protection mechanisms. This attack will also

fail since the cache is tagged with each VM’s VMID. Thus,

a VM cannot access another VM’s data in cache.

The security of VM-Shim can also be ensured. The VM-

Shim resides in the same protected context with its VM but

is isolated from the VM: a VM-Shim has separated address

space but is granted with access to arbitrary memory in

its corresponding VM; oppositely, a VM cannot access the

memory space of its VM-Shim. Each VM-Shim instance

only does very little work and is usually quite small (in the

scale of one to two thousands LOCs). Hence, it is relatively

easy to formally verify its correctness. There is exactly one

VM-Shim for each VM and each VM-Shim is protected

by the processor. Hence, a security breach of a single VM-

Shim cannot affect the security of other VMs.

Meanwhile, the VM-Shim is also non-bypassable. Each

time there is a VM exception, the processor will immedi-

ately transfer control to the entry address of VM-Shim that

is saved in the VM-Table. The memory of VM-Shim is

also protected by the encryption and BMT. Meanwhile, the

VM-Shim is trusted by each guest OS in our threat model.

Any behavior of the VM-Shim is considered as following

the tenant’s intention.

Another possible attack could be issued by a malicious

service client, who could bribe the cloud operator to hide

the actual usage amount of the service and thus pay less.

Such attack could be prevented by the sealed policy, which

updates a counter saved on trusted a counter server every

time it runs. The counter could not be tampered with, and

could be retrieved by the tenant as a proof of actual usage.

8 SECURITY ANALYSIS

Besides the attacks listed in last section, a malicious

hypervisor may also issue attacks by manipulating the

return value of services it provides to guest VMs, similar

as the Iago attack [25] from malicious OS to applications.

8.1 Defending Against Iago-like Attack

Unlike the complex interface between OS and applica-

tion, the interface between hypervisor and guest VM is

much simpler, which greatly reduce the attacking surface.

However, by analyzing the semantic of all the interfaces

and considering the usage of returned value, we still find

several possible Iago-like attacks. Kite can well address all

of these potential threats.

Memory-mapping attack: In Iago attack, a malicious

OS may map different virtual memory pages to the same

physical memory page. If one of the virtual pages belongs

to application’s stack, then modifications to another virtual

page will also change the stack, which might further cause

violation of control flow integrity. Similarly, in virtualized

environment, a malicious hypervisor may map two guest

physical pages to the same host physical page, and issue

similar attack. Kite defends this attack by letting the user

verify the integrity of initial memory image, which is pro-

tected by the initial vm vector. As mentioned in section 4,

AISE uses a different counter for each memory page, thus

even if two pages have identical data, they are different

after being encrypted on the memory, which prevents a

malicious hypervisor from mapping them to the same
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physical memory page. Similarly, a malicious hypervisor

may remap different pages of the same VM during runtime.

If the pages are in cache, then the BMT check is bypassed

and the integrity of VM’s memory is violated. Kite defeats

this attack by invalidating cache at the time of remapping

(EPT modification), as stated in Section 4.1.

Random number generating: OS typically seeds its

entropy pool from devices, such as keyboard and mouse

input, disk I/O, network I/O, etc. In a virtualized environ-

ment, all of the devices are virtualized by the hypervisor,

which should not be trusted as entropy sources. In Kite,

we add a random number generator to the secure processor

and provide an instruction rand gen to serve the guest OS

secure random numbers.

Timing info: A VM usually relies on hypervisor to get

time information. Thus, a malicious hypervisor may return

faked time value to the guest. If the guest uses time info

to enforce some security policies, it may be fooled and

its security may be violated. Kite solves this problem by

leveraging trusted time server, as shown in figure 2, which

accepts a nonce and returns a signed value containing the

current time with the nonce. The guest VM can check the

nonce and signature to ensure the freshness and validity of

the time value.

Other attack surface: Most of the interface between

VM and hypervisor is at hardware level, including memory,

device, processor states, etc., which exposes a small attack

surface to attackers. On one hand, in most VMEXITs the

hypervisor just requires a few pieces of data, e.g., contents

of control registers. Thus, the VM data exported through

VMEXITs is very limited. On the other hand, the value

returned by the hypervisor as a service is also at low-

level and has little semantic, which is far from enough to

mount a security attack. However, we still cannot prove

that the Iago-like attacks are 100% eliminated on Kite.

We plan to adopt interface-verification technologies such

as InkTag [50] to Kite to strengthen the defense against

Iago attack.

8.2 Other Security Issues

As discussed in section 2.4, Kite does not ensure the

availability of a VM. A malicious hypervisor may slow

down the execution of a VM by limiting its resource, or

even stop it by not scheduling it at all. Meanwhile, it

can also give a wrong result when processing VMEXIT.

However, Kite ensures that these attacks on availability

cannot get tenant’s private data or tamper with the execution

of a VM.

We currently adopted a fail-stop model in the paper.

Before halting, the abnormal behavior will be logged, and

the hash of log will be saved in a non-volatile register in

the processor for later auditing.

Currently, we support multi-core chips, but not multi-

chip processors. The challenge is that the data encryption

mechanism used in Kite does not suit data exchanging

among chips. SENSS [51] utilizes the Cipher Block Chain-

ing mode of the advanced encryption standard (CBC-AES)

for encryption/decryption of shared bus between chips.

Supporting multi-chip processors and multi-processor will

be our future work.

Encrypting all VM’s memory prohibits content-based

memory sharing and deduplication among VMs, as well

as some VM introspection, since the hypervisor can only

see encrypted version of VM’s data.

9 PERFORMANCE EVALUATION

We implemented a working prototype by modifying

QEMU full-system emulator to validate the applicability of

Kite. A VM-Shim is implemented to support unmodified

Linux and Windows VM, which can run both on a real

machine and QEMU. In a real machine, it runs in the

host mode together with Xen to simulate the control tran-

sitions among the hypervisor, VM and VM-Shim. A user-

level agent consisting of 200 LOCs is implemented in the

management tools of Xen to assist the fetching and storing

of counters and hashes for Kite. The VM-Shim currently

consists of around 1,200 LOCs. We also change around 230

LOCs in Xen to secure VM booting and cooperate with the

data exchange mechanisms in VM-Shim.

9.1 Performance Evaluation on Simulator

As there is currently no cycle-accurate full-system simu-

lator that can run a virtualized platform, we use QEMU

as a full-system simulator to collect traces and dinero-

IV [52] to do trace-replay. These benchmarks are run with

reference input set. Each benchmark is simulated for 1-

billion instructions inside the VM, after skipping 10-billion

instructions. As the number of benchmarks is too large for

exposure, we only report a set including astar, bzip2, gcc,

lbm, libquantum, mcf, milc, sjeng, sphinx3, and h264ref,

similar as prior work [21].

We model an in-order processor with split caches for

data and counter. Specifically, the processor is modeled

as single-core as the evaluated benchmarks are single-

threaded. The last level data cache is 8MB in size, 8-way

set-associative and has a counter cache with 64KB and 8-

way set-associative. All caches uses the LRU replacement

policy and each block is with 64 bytes. The main memory

size is 512MB with an access latency of 350 cycles. The

encryption engine uses AES with a latency of 80 cycles.

HMAC based on SHA-1 is used for MAC computation,

with an 80-cycle latency. The latency of each non-memory

instruction is counted as one cycle. The encryption seed

contains a 64-bit per-page LPID and a 7-bit per-block

counter. A total of 64 counters and 1 LPID are co-located

within one chunk, which corresponds to a 4KB memory

page. The default hash size is 128 bits. The simulated

machine runs Xen-4.0.1 as the hypervisor, Debian-6 and

Windows XP-SP2 as the OSes for the VMs.

Figure 10a shows the performance overhead caused by

Kite. The average overhead is about 5.7%, in which 2.6%

is due to AISE and BMT, and 3.1% is due to the VM-Shim.

It should be noted that in our evaluation, we assume that

the memory bandwidth is not the bottleneck even under the
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Fig. 10: Performance Overhead on both Simulated and Real Machine

pressure of MAC access. However, this assumption may not

be practical enough as the number of CPU cores increases,

which could cause longer memory access latency due to

contention. The evaluation and optimization for multi-core

platform will be needed in the future.

9.2 Performance Evaluation on Real-machine

To evaluate the performance overhead of VM-Shim, we

run several benchmarks on a real machine without a secure

processor substrate. The real machine has an AMD quad-

core CPU with 4GB memory and a 100Mb NIC and 320GB

disk, on which we compare the performance of Linux and

Windows VMs runs upon VM-Shim against vanilla Xen-

4.0.1. Each VM is configured with one or more virtual

CPUs, 1GB memory, a 20GB virtual disk and a virtual

NIC. The VMs run unmodified Debian-Linux with kernel

version 2.6.31 and Windows XP with SP2, both are with

x86-64 versions.

We use a set of application benchmarks for Linux VMs,

including Linux kernel build (kbuild), dbench-3.0.4 for

disk I/O, netperf for network I/O and memcached-1.4.5

for memory. We also used SPECjbb-2005 to evaluate the

server side performance of Java runtime environment in the

Windows VM. We further evaluate the performance and

scalability of VM-Shim by running all the benchmarks and

applications with multiple cores.

Figure 10b shows the performance of VM-Shim on a

single-core and a quad-core machine. The performance

overhead for Kbuild is rather low, because there are very

few VM traps. The overhead of disk I/O (shown in dbench)

is also small because the disk and memory use the same

encryption mechanism and same key to encrypt/decrypt,

thus the hypervisor can do the copy between the memory

and disk directly. The network performance overhead is

relatively high, since VM-Shim needs to interpose and

reveal data during package sending and receiving. On the

quad-core machine, the netperf is bounded by network

bandwidth, thus the performance degradation is less than

the one on single-core machine. The performance overhead

for SPECjbb is quite low, because it rarely interacts with

the hypervisor and VM-Shim.

9.3 Storage Overhead

For each 4KB memory page, there is a 64-bit LPID

and 64 7-bit counters needs to be saved in memory. For

example, on a machine with 4GB main memory, 64MB

memory is needed for the counters. The MAC of the 64MB

counters occupies 128 bits per cache line (64B), which

takes another 16MB memory (0.39% overhead) for the

counters. The whole BMT is then about 21MB. Meanwhile,

the MAC of the data is also 128 bits per 64 bytes, which

takes 1GB memory. Thus, the total memory overhead is

21.55%. This memory overhead will be smaller if using 64-

bit or 32-bit MAC. The disk also needs 1.56% storage for

seeds. The overhead of hash is even smaller, since the hash

tree costs 128 bits per 512KB. The total storage overhead

of disk is 1.61%.

10 CONCLUSION

This paper considered a strong adversary model for

multi-tenant cloud and proposed a hardware-software

framework called Kite that enables the user to fully control

the data, code and execution of the outsourced virtual

appliance in the presence of untrusted hypervisor and

even physical attacks. Kite carefully considered design

and implementation issues with commercial off-the-shelf

virtualization stack and extended existing processor virtual-

ization with memory encryption and integrity checking as

well as the VM-Shim mechanism to transparently secure

control transitions and data interaction. It also regarded

the high-level semantic of interaction between the VM and

hypervisor to defend against attacks like rollback attack

and Iago-like attacks. Performance evaluation shows that

the performance overhead is small.
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