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Abstract

The privacy and integrity of tenant’s data highly rely on

the infrastructure of multi-tenant cloud being secure. How-

ever, with both hardware and software being controlled by

potentially curious or even malicious cloud operators, it is

no surprise to see frequent reports of data leakages or abuses

in cloud. Unfortunately, most prior solutions require intru-

sive changes to the cloud platform and none can protect a

VM against adversaries controlling the physical machine.

This paper analyzes the challenges of transparent VM

protection against sophisticated adversaries controlling the

whole software and hardware stack. Based on the analysis,

this paper proposes HyperCoffer, a hardware-software frame-

work that guards the privacy and integrity of tenant’s VMs.

HyperCoffer only trusts the processor chip and makes no se-

curity assumption on external memory and devices. Hyper-

Coffer extends existing processor virtualization with memory

encryption and integrity checking to secure data communi-

cation with off-chip memory. Unlike prior hardware-based

approaches, HyperCoffer retains transparency with existing

virtual machines (i.e., operating systems) and requires very

few changes to the (untrusted) hypervisor. HyperCoffer intro-

duces a mechanism called VM-Shim that runs in-between a

guest VM and the hypervisor. Each VM-Shim instance for a

VM runs in a separate protected context and only declassifies

necessary information designated by the VM to the hypervi-

sor and external environments (e.g., through NICs). We have

implemented a prototype of HyperCoffer in a QEMU-based

full-system emulator and the VM-Shim mechanism in a real

machine. Performance measurement using trace-based sim-

ulation and on a real hardware platform shows that the per-

formance overhead is small (ranging from 0.6% to 13.9% on

simulated platform and 0.3% to 6.8% on real hardware for

the VM-Shim mechanism).

1. Introduction

A key premise underlying multi-tenant cloud is that users’

data should be securely stored and processed. Unfortunately,
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many commercial clouds only provide limited security assur-

ance on users’ data [1, 2]. It is no surprise that a recent sur-

vey over 500 chief executives and IT managers shows that

they are reluctant to move their business to cloud due to “fear

about security threats and loss of control of data and sys-

tems” [3].

There are two main reasons for such limited security assur-

ance First, the hardware and software stack in multi-tenant

cloud is notoriously large and complex, which raises the pos-

sibility of security compromises on the virtualized stack [4].

Second, though typical cloud vendors do place some physical

(e.g., surveillance cameras and extra security personnel) and

software access control to cloud operators, it is hard to strictly

limit the behavior of cloud operators as software and hard-

ware maintenance (e.g., memory or device replacement) of a

cloud platform has become a daily work. In practice, Google

reports thousands of machine failures every year [5]. Detect-

ing subtle malicious actions from frequent maintenance oper-

ations in large cloud platforms is like finding a needle in a

haystack. Those curious or even malicious cloud operators

who can easily gain the full control of the cloud may unre-

strictedly inspect or tamper with users’ data, by either physi-

cal [6, 7, 8] or software attacks [4]. Furthermore, recovering

data from residues of off-power memory [6, 8] has shown to

be possible. This situation will be even worse if the replaced

memory has become non-volatile (e.g., phase-change mem-

ory).

For these reasons, one report from Gartner states that one

of the greatest challenges of cloud computing is “invisibly ac-

cess unencrypted data in its facility” [9]. One recent survey

on cloud security also states that physical attacks have serious

implication on data security [7]. Worse even, the threats are

not groundless but real. Google has recently fired employees

for “breaking internal privacy policies” and causing “a mas-

sive breach of privacy” in Gtalk and Google Voice [10]. Sur-

prisingly, the privacy breach lasted for several months before

being detected.

With the whole hardware and software stack of a multi-

tenant cloud being controlled by cloud operators, users will

likely be forced to assume a strong adversary model that trusts

only a small part of the cloud. Previous research shows that it

is reasonable to assume a tamper-resistant CPU chip to be

secure, while leaving external memory and devices as un-



trusted [11, 12, 13, 14]. However, most prior secure processor

proposals focus on application-level protection and require a

non-trivial change of operating systems [11, 12, 13, 15], appli-

cations [14], or both. In contrast, software-based approaches

such as CloudVisor [16] cannot guard against physical at-

tacks like bus snooping and cold-boot attack[6, 8]. Similar to

CloudVisor, hardware proposals including SecureMMU [17],

H-SVM [18] and HyperWall [19] leverage architectural sup-

port to enhance the memory management units to isolate a

VM’s memory from the hypervisor1. However, they require

changes to operating systems and cannot defend against phys-

ical attacks.

In this paper, we propose a hardware-software framework,

named HyperCoffer, which provides strong and transparent

VM-level protection in a multi-tenant cloud. HyperCoffer

only trusts the processor chip, while assuming all other hard-

ware components such as external memory and devices as un-

trusted. Unlike previous approaches, HyperCoffer can protect

against both software and physical attacks at VM level.

However, enforcing security policies inside secure proces-

sor is difficult due to the semantic gap between a VM and se-

cure processor. This is because processors are not expressive

enough to capture and handle complex high-level semantics

inside a VM, including the data interaction between VM and

hypervisor as well as external environments. Further, relying

purely on hardware-based protection limits the scalability in

supporting a virtually infinite number of VMs on a CPU core,

due to the restricted functionality and limited on-chip stor-

age. To this end, HyperCoffer takes a novel approach that lets

the secure processor provide security-enhancing mechanisms,

while leaving the handling of most virtualization-specific se-

mantics in a small piece of software, named VM-Shim 2. Hy-

perCoffer provides both hardware support for running VM-

Shim and a specification of interactive data for communica-

tion between the hypervisor and VM-Shim. The implementa-

tion of VM-Shim software can be various as long as it follows

the specification. It also has small code size thus is amenable

for formal verification. One way of VM-Shim deployment

is to make the code publicly open-sourced for all clients to

verify its harmlessness.

To demonstrate the applicability of HyperCoffer, we have

implemented a prototype in a QEMU-based full-system emu-

lation environment with the Xen VMM. The VM-Shim con-

sists of around 1,100 LOCs and requires modification around

380 LOCs to the hypervisor and VM management tools,

which shows that the VM-Shim can be easily implemented

with modest code size. The performance measurement also

shows that the overhead is small.

1While the virtualization stack contains both a management VM, zero

or more driver VMs and the hypervisor, other than specially mentioned, we

uniformly call them all together as the hypervisor for presentation clarity in

this paper.
2Shim is common software mechanism for application adaptability in

computing [20], we use the name VM-Shim as it adapts a VM to Hyper-

Coffer without the requirement to change the guest OS.

In summary, this paper makes the following contributions:

• The first hardware-software framework that transparently

protects guest virtual machines against an untrusted hyper-

visor and even physical attacks.

• The VM-Shim mechanism that provides a scalable and

transparent approach to protecting an arbitrary number of

VMs on commercial off-the-shelf virtualization stack.

• A prototype implementation and evaluation in both a

QEMU-based full-system emulation environment and real

hardware platform with the Xen VMM, which is demon-

strated with low performance overhead.

The rest of this paper is organized as follows. The next sec-

tion describes necessary background and related work. Sec-

tion 3 describes the goals and challenges underlying Hyper-

Coffer, as well as an overview of the design of HyperCoffer.

Section 4 illustrates the architecture extension required by Hy-

perCoffer. Section 5 describes the specification of interactive

data for VM-Shim, followed by an overview of how Hyper-

Coffer leverages such extension to secure the life-cycle of a

VM in section 6. We then present security analysis in sec-

tion 7 and performance results of HyperCoffer in section 8.

Finally, section 9 concludes this paper.

2. Background and Related Work

2.1. Virtualization & VM Protection
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Figure 1: Hardware-Assisted Virtualization

Hardware-assisted virtualization has now been a standard

feature in desktop and server platforms. For example, x86

processor virtualization introduces a “host mode” to run hy-

pervisor and a “guest mode” to run VMs. When a VM exe-

cutes a privileged operation, it gets trapped from guest mode

to host mode, which is called a “VMEXIT”. The hypervisor

then handles the VMEXIT according to different exit reasons,

e.g., I/O operations, privilege instructions execution. Then

it resumes the trapped VM by issuing VMENTER instruc-

tion. Figure 1-a shows the process. To encapsulate a VM’s

CPU context, there is also an in-memory VM control struc-

ture (VMCS) for each virtual CPU, which encapsulates the

CPU context for both the VMs (VM context) and the hyper-

visor (hypervisor context). The VMCS is saved by proces-

sor during VMEXIT and is used by the hypervisor to han-



dle the VMEXIT and resume a VM’s execution. Figure 1-b

shows the address translation process in virtualized platforms.

Guest application uses guest virtual address (GVA), which is

translated to guest physical address (GPA) 3 through a VM’s

page table. GPA is further translated to host physical address

(HPA) through extended page table (EPT) maintained by the

hypervisor. GPA is a continuous memory space from a VM’s

perspective, but can be mapped to discontinuous HPA space.

The commercial success of virtualization and multi-tenant

cloud and the lack of security guarantees for tenant’s data

have generated considerable interests to the research commu-

nity to improve the cloud trustworthiness and security. On the

software side, NoHype [21, 22] advocates space-partitioning

cores, memory and devices to a VM, detaching the virtualiza-

tion layer during a VM’s normal execution time. This reduces

the attack surfaces for a VM as the VM is physically isolated

from other VMs as well as the management VM for most

of the time. Compared to NoHype, HyperCoffer assumes a

stronger adversary model that further considers physical at-

tacks, while NoHype only considers software attacks and can-

not guard against sophisticated attacks such as inspecting a

VM disk, bus snooping and memory freezing. Further, Hy-

perCoffer still retains most functionalities in a commercial

hypervisor like time-multiplexing resources, which are cur-

rently absent in NoHype. To further guard the privacy and in-

tegrity of a VM’s memory and disk images, CloudVisor [16]

separates the security protection from resource management

and leverages a tiny nested hypervisor to encrypt and check

the integrity of VMs. However, it does not defend against

physical attacks and still requires means to secure the nested

hypervisor, which may suffer from single point of security

failure.

On the hardware side, H-SVM [18] and HyperWall [19]

also separate the management of memory resources from the

security protection, but without the need of a nested hypervi-

sor. Instead, H-SVM uses microcode programs in hardware

to enforce memory protection. HyperWall introduces CIP

(Confidentiality and Integrity Protection) tables to do mem-

ory isolation. However, they require non-trivial changes to

the guest OS as well as the hypervisor. For example, H-SVM

needs to handle the complex VM interactions and data shar-

ing by patching both guest OSes and the hypervisor. Further,

H-SVM does not protect data in external devices but instead

insists the VM itself to secure its I/O data. HyperWall also re-

quires the guest OS to decide which memory pages to be pro-

tected against the untrusted hypervisor, which is a non-trivial

task for even a sophisticated programmer as specifying such

pages requires deep understanding of different OSes and us-

ages of memory pages by applications are dynamic. Further,

HyperWall ignores the complex data interaction between the

hypervisor and guest OS illustrated in this paper (section 3.1).

3In this paper, we denote the guest physical address as the pseudo physi-

cal address seen by the guest VM, and the host physical address as the real

physical address in a machine.

Finally, major cloud maintenance operations like VM snap-

shot/restore are disabled since the hypervisor cannot access

any protected memory. Live VM migration must be done with

the assistant of guest OS, which needs further modification of

the guest OS.

Similar to prior H-SVM and HyperWall, HyperCoffer also

assumes an untrusted hypervisor. However, HyperCoffer

does not trust the external memory or devices and uses mem-

ory encryption and integrity verification to protect off-chip

data. Further, HyperCoffer captures complex VM interac-

tions and data exchanging in a VM-Shim to retain OS trans-

parency. Finally, HyperCoffer is designed to still support ex-

isting cloud maintenance operations (section 6).

OS Trans- TCB Size Phys. Cloud

parent Attk. Func.

HyperWall No CPU + Memory + IOMMU No Part

H-SVM No CPU + Memory + IOMMU No Full

CloudVisor Yes All hw + CloudVisor (5.5K LOC) No Full

HyperCoffer Yes CPU + VM-Shim (1.1K LOC) Yes Full

Table 1: Comparison of Related Systems

Similar to HyperCoffer, Overshadow [23] also leverages

the concept of shim [20], but mainly uses it to adapt the se-

mantics of system calls between a hypervisor and guest OSes,

which is much more complex than the VM-Shim in Hyper-

Coffer. Further, the shim mechanism in Overshadow is OS-

specific and requires completely different shim implementa-

tions for different OSes. In contrast, the VM-Shim mecha-

nism in HyperCoffer is portable among different OSes and is

much simpler.

2.2. Secure Processor

Secure processor has been extensively studied during the

last decade [11, 12, 24, 13, 25, 26, 27, 28, 29, 30, 31, 32,

33, 34, 35, 36, 37, 14, 15]. For example, Bastion [14]

and SecureME [15] also leverage secure processor to pro-

tect against hardware attacks. However, they both need to

trust the hypervisor, while HyperCoffer only trust the pro-

cessor chip. Further, unlike HyperCoffer, they break applica-

tion/OS transparency in requiring either non-trivial OS modi-

fication [15] or refactoring applications into modules for pro-

tection. In contrast, HyperCoffer retains OS and application

transparency by leveraging the VM-Shim mechanism.

For secure processor designs, we briefly review two major

techniques: AISE-based data encryption and Bonsai Merkle

Tree (BMT) [33], as they will be adapted to HyperCoffer to

secure off-chip data.

AISE-based Data Encryption for Memory Privacy Pro-

tection: Rogers et al. proposed counter-mode address-

independent seed encryption (AISE) [33] for memory encryp-

tion. Figure 2 shows the data flow of an AISE secure proces-

sor. Instead of encrypting/decrypting a data block (i.e., cache

block) directly, the processor encrypts/decrypts a seed of the

block to generate a pseudo-random pad, which is then XORed
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Figure 2: Secure Processor with AISE and BMT

with the plain-text of the data block to generate cyphertext.

Similarly, plain-text is generated by XORing cyphertext with

the same pad. A seed is composed of three parts: LPID,

counter, and offset. LPID (Logical per-Page ID) is unique

for every physical memory page. Its value is assigned at the

initialization time and independent of the page address. The

counter and page offset are for every cache block. Once a

counter overflows, the corresponding page is assigned with

a new LPID and re-encrypted. Therefore, an attacker can-

not issue replay attacks by reusing a seed. All the LPID and

counters are saved in the main memory and can be found us-

ing simple indexing for a given physical address. A separated

cache, named counter cache, is introduced to host LPID and

counters for optimization.

BMT for Memory Integrity Protection: Bonsai Merkle

Tree (BMT) [33] has been proposed to do integrity checking.

A hash value is generated from the cyphertext and the hash

tree is updated accordingly. When loading data from memory

to on-chip cache, the corresponding hash value is fetched and

compared with the hash value calculated from the loaded data

block. The root of the BMT is saved inside the chip. In BMT,

only the memory region of counter and LPID is covered by

the hash tree, the data region is protected only by hash without

tree. The basic idea is to use counter as the version of data,

thus the integrity of data is ensured as long as the counters are

protected.

It is worth noting that the overhead of AISE+BMT is very

low: merely 1.8% for SPEC2K [33]. The reasons are as fol-

lowing. First, encryption is needed only in cases of data cache

miss. Second, the encryption/decryption is on the seed in-

stead of the data thus can be parallelized with memory load-

/store. Third, the hit rate of counter cache is very high since

the counter size is small. Fourth, BMT significantly reduces

the size of hash in both memory and cache.

3. Goals, Challenges and Design

The overall goal of HyperCoffer is to provide strong pri-

vacy and integrity protection of VMs against even physical

attacks, while minimizing the size of the trusted computing

base (TCB). Further, as one reason for the success of virtu-

alization is backward compatibility with existing OSes, it is

demanding that HyperCoffer should not sacrifice backward

compatibility in requiring changes to guest OSes. Finally, as

VM management operations like snapshot and migration are

indispensable for maintaining cloud platforms, HyperCoffer

should also support such operations.

3.1. Challenges

The hypervisor cannot work correctly if all data interac-

tions with VM are forbidden. However, dividing protected

and unprotected data is a non-trivial work due to the complex

interaction between hypervisor and VMs.

Secure VM/Hypervisor Interaction: The interaction be-

tween VM and the hypervisor is complex. Let’s take privilege

instruction emulation as an example: Once a VM executes

“out %dx %eax”, it will trap to the hypervisor to emulate this

instruction, since out is a privilege I/O instruction. Once the

hypervisor start to run, it first gets the address of the trapped

instruction, which is in GVA. It then translates GVA to GPA

by walking through the page table of a VM, and further trans-

lates GPA to HPA. According to the HPA, it maps the memory

page and fetches the instruction. In order to emulate the logic,

the hypervisor also needs to get the value of register %eax

and %dx. The process involves accesses to both memory and

CPU context of the VM.

Interaction with the Outside World: When operating an

I/O device, a VM needs to send metadata (e.g., DMA com-

mands) to the device in plain-text, otherwise the device can-

not perform correctly. Many prior approaches secured data

exchanges with external devices by making some assump-

tions on the devices or requiring rewriting of device-specific

parts in OS. For example, Shi et al. [38] required north bridge

to keep track of the secure memory ranges and assumed

an intelligent memory controller to automatically verify and

convert the encryption scheme for I/O data. AEGIS [13]

partitioned external memory into secure and insecure parts.

XOM [11, 12] required rewriting of OS, which led to non-

trivial engineering work and was not portable among different

OSes.

3.2. HyperCoffer Design Overview

Figure 3 shows an overview of HyperCoffer. HyperCoffer

leverages and extends traditional secure processor technology

for virtualization environment. It uses AISE for encryption,

BMT for integrity check, and introduces VM-Table for mul-

tiplexing. All the data within a VM is protected, including

the data in CPU context, on-chip cache, memory and I/O de-

vice. Different VMs are isolated with each other since they
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Figure 3: Overview of HyperCoffer

use different keys.

Applying secure processor alone is far from enough, since

it cannot bridge the semantic gap between VMs and the hy-

pervisor. A simple solution would require non-trivial mod-

ifications to both the hypervisor and guest OSes, which are

resource-intensive, non-portable and error-prone. To retain

OS transparency and only reveal necessary information of

VM to the hypervisor, HyperCoffer provides a mechanism

called VM-Shim, which consists of two components: 1) hard-

ware support to enable control interposition between the hy-

pervisor and VMs, as stated in section 4.6 and 2) a specifi-

cation of interactive data between the hypervisor and VMs,

which contains CPU context, I/O data and auxiliary informa-

tion, as stated in section 5. The hypervisor and VM-Shim in-

stance use the specification to communicate with each other.

The software implementation of VM-Shim only depends

on the specification. Unlike OS-specific drivers in para-

virtualization system, VM-Shim is OS-independent and can

run without any awareness of the guest OS. Thus, the

VM-Shim mechanism enables HyperCoffer to retain OS-

transparency in requiring no changes to guest OS, which is

crucial to current multi-tenant cloud. It is also highly scalable

in supporting an arbitrary number of VMs. Meanwhile, the

hypervisor does not need to trust the software of VM-Shim

since each VM-Shim instance runs with the VM and is iso-

lated from each other. The VM-Shim mechanism serves as

a key means to minimize necessary hardware changes and

bridge the semantics gap.

Unlike previous approaches relying on manipulating ad-

dress translation [16, 18], or introducing additional access

flag [19] to secure VM’s memory, HyperCoffer is designed to

be orthogonal to the existing memory virtualization schemes.

HyperCoffer also makes no assumption on whether a system

has IOMMU4 or not.

The TCB of HyperCoffer contains only the secure proces-

sor, which can be easily verified by its public key. The clients

don’t need to trust any software component from the cloud

provider. It also maintains backward compatibility to guest

OS and requires minor change to the hypervisor. In addi-

4IOMMU translates physical addresses to device addresses.

tion, it introduces new instructions to securely support VM

operations, including VM suspend/resume and migration, as

described in section 6.

3.3. Threat Model and Security Guarantees

In HyperCoffer, neither the virtualization software stack

nor physical environment is trusted, resulting in a strong ad-

versary model and a minimized TCB. However, there are

three kinds of attacks that are not considered in this work.

First, an adversary may still have the opportunities to subvert

a VM by exploiting the security vulnerabilities inside a VM.

How to harden the VM itself is out of the scope of this pa-

per. Second, given that primary goal of cloud providers is

featuring utility-style computing resources to users with cer-

tain service-level agreement, HyperCoffer provides no guar-

antee on the execution correctness and availability of a VM.

Third, we do not try to prevent against side-channel attacks

in the cloud [39], which are usually hard to deploy and have

very limited bandwidth to leak information. However, Hyper-

Coffer ensures that an adversary controlling a subverted VM

cannot further break other VMs through the tampered hyper-

visor or even abused hardware.

4. HyperCoffer Architecture

4.1. Memory Data Protection

HyperCoffer adopts AISE and BMT to protect memory due

to their low overhead (as mentioned in section 2.2). One dif-

ference from traditional AISE and BMT is that in HyperCof-

fer the processor uses GPA to index counters and hash values,

instead of using HPA, since the memory of a VM is not phys-

ically continuous. Although a malicious hypervisor has the

control over mapping from GPA to HPA, it still cannot tam-

per with guest’s data, counter or hash because the root of the

BMT is securely protected, as shown in figure 4. We add a

per-core guest-TLB (g-TLB) tagged with VMID to assist ad-

dress translation of hashes and counters from GPA to HPA, to

avoid affecting the main TLB.

4.2. Cache Data Protection

Since data is not encrypted inside on-chip cache, it might

be vulnerable to inter-VM remapping attacks. A malicious

VM can map some physical memory of a victim VM (with

the help of a malicious hypervisor) and access the data with a

cache hit, thus bypasses the encryption engine. In HyperCof-

fer, each VM is assigned a unique VMID, and each cache line

is tagged with its owner’s VMID. This ensures that a VM can

only access cacheline with its own tag. VMID is the index of

a VM in VM-Table, as stated in section 4.5.

4.3. CPU Context Protection

CPU context is also properly protected when execution

transfers from a VM to the hypervisor or other VMs. The



New Instruction Environment Instruction Semantic

vm_install, addr1, addr2 Hypervisor Install vm_key (addr1) and vm_vector (addr2). Return VMID.

vm_uninstall, VMID Hypervisor Remove the vm_vector indexed by VMID from the VM-Table.

vm_snapshot, VMID, addr Hypervisor Encrypt the vm_vector indexed by VMID and save it to memory.

ept_st, addr, val Hypervisor Update data in EPT memory. Invalid cache only if an GPA_2_HPA mapping is modified or deleted.

VMENTER (modified) Hypervisor Resume VM-Shim instead of the VM

VMEXIT (modified) Guest VM Transfer control to VM-Shim instead of the hypervisor

shim_to_host Shim Trigger VMEXIT and switch to host mode

shim_to_guest Shim Switch to guest mode and resume VM

raw_st, addr, val Shim/Guest Store data into memory without encryption

raw_ld, enc_on, addr Shim/Guest Load data without integrity check. Use enc_on to control encryption engine on or off

Table 2: New Instructions in HyperCoffer

Key Context Protection

Kvm per VM Encrypt VM memory and disk image

Kmem per Chip Encrypt CPU reserved memory for VM-Table

SKcpu per Chip Private key of the CPU

Table 3: Keys involved in HyperCoffer

processor encrypts the context data and leverages hash to pro-

tect its integrity, thus the hypervisor cannot access or tamper

with VM’s context. One exception is the virtual interrupt

vector field, which is used to deliver interrupt from device to

VM. For other fields, VM-Shim will offer minimal necessary

fields of CPU context to the hypervisor, according to the se-

mantics of different VMEXIT reasons, which will be detailed

in section 5.1.

4.4. EPT Protection

The extended page table (EPT) of VMs are fully controlled

by the hypervisor for memory management. However, a ma-

licious hypervisor may issue intra-VM remapping attack by

changing GPA to HPA address mapping without invalidating

cache. Thus, if the mapped data is in cache, no integrity check

will occur and the memory integrity of the VM is violated.

HyperCoffer addresses this issue by mandating that all the

EPTs are stored within a specific memory region named EPT

memory. A new instruction, ept_st, is introduced as the only

way to modify EPT memory, which triggers cache invalida-

tion when GPA to HPA mapping is changed. We observed

that hypervisor usually updates the entire EPT table in a batch,

before flushing TLB to enable the new mapping. To avoid un-

necessary cache invalidation, e.g., during VM launching and

destroying, HyperCoffer delays invalidating cache when up-

dating TLB. When the hypervisor is modifying EPT using

ept_st, the processor sets a bit flag to indicate that EPT has

been updated. Each time there’s a TLB miss or TLB flush, the

processor invalidates cache if the flag is set, and then clears

the flag. Nevertheless, EPT updates are rare during VM exe-

cution.

4.5. VM-Table for Multiplexing

Each VM has an entry in VM-Table that contains informa-

tion necessary for AISE and BMT engines:

• VMID is a unique identifier for each VM, which is the in-

dex of VM slot in the VM-Table. The range of VMID is

large enough for the number of running VMs.

• Kvm is the encryption key for that VM during runtime.

• vm_vector, which includes following items:

– HRootvm is the root hash of the VM’s BMT.

– Addrcnt and AddrBMT are start addresses (GPA) of coun-

ters and BMT in memory.

– Addrshim is the entry address (GPA) of VM-Shim.
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Figure 4: The root hash of guest BMT is saved in VM-Table.

VM-Table is in CPU-reserved memory region, whose

root hash is saved on-chip.

In our design, the VM-Table is saved in a CPU-reserved

portion of physical memory, which is also protected by AISE

& BMT. This portion of memory is accessible only to the

secure processor itself. A separated key, Kmem, is used for

encryption and BMT, which is generated randomly when the

processor is powered on, and is securely saved inside the pro-

cessor. Since the VM-Table contains root hashes of VMs’

BMT, it further ensures the integrity of VMs’ memory space,

as shown in figure 4. By using memory to save the VM-Table,

we can save expensive on-chip storage. Meanwhile, the num-

ber of VMs running concurrently can be proportional to the

memory size. We also introduce on-chip cache for VM-Table

entries to optimize the performance. Three new instructions

are introduced to operate on the VM-Table, i.e., vm_install,

vm_uninstall and vm_snapshot, as listed in table 2.
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4.6. VM-Shim Mode

A VM-Shim has its own running context. It shares the

same Kvm and BMT with the corresponding VM and can ac-

cess the CPU context and all the memory of the VM. It also

reserves a memory region that the VM cannot access. A VM-

Shim has no permission to read or write memory of other

VMs or VM-Shims. In order to enable data exchanging be-

tween VMs and the hypervisor, HyperCoffer provides two

new instructions: raw_ld and raw_st, as described in table 2.

A VM-Shim interposes the control transition between a

VM and the hypervisor. Adding a “man-in-the-middle” also

introduces the reentry issue. For example, if a hardware inter-

rupt occurs when a VM-Shim is running, the processor will

enter the same VM-Shim again. One way to handle this is dis-

abling hardware interrupt when a VM-Shim is running. How-

ever, as a VM-Shim runs in the context of a VM, it should

not be granted with the privilege to turn on/off CPU interrupt.

Otherwise, a malicious VM can easily freeze the whole sys-

tem by disabling all interrupts.

HyperCoffer solves this problem by dividing events caus-

ing a VM trap into two cases: synchronous events caused

by exception, and asynchronous events caused by interrupt.

Figure 5-a shows the handling process of exception-caused

VMEXIT:

• 1©: The processor transfers control from a VM to its VM-

Shim.

• 2©: VM-Shim prepares the data needed by the hyper-

visor according to the semantics of different VMEXIT

reasons, and transfers control to the hypervisor through

shim_to_host.

• 3©: the hypervisor handles the VMEXIT, exchanges data

with VM through VM-Shim’s memory region if needed,

and issues VMENTER.

• 4©: the VM-Shim copies data from the hypervisor (if any)

to the VM’s memory space and CPU context. Finally it re-

sumes the VM’s through shim_to_guest. More details on

data interaction between a VM and hypervisor is in sec-

tion 5.

The second case is interrupt-caused VMEXIT. Since it is

an async event, in order to prevent the re-entry problem, the

processor skips VM-Shim, as shown in figure 5-b. Since the

VMEXIT is not caused by a VM, the hypervisor does not

need the guest’s information. However, it may still deliver a

virtual interrupt to a VM by setting flags on guest’s virtual

interrupt vector, which is a part of the VM’s CPU context.

As we mentioned in section 4.3, the virtual interrupt vector

is not protected, thus the hypervisor can modify it directly.

Once an interrupt-caused VMEXIT occurs when VM-

Shim is running, as shown in figure 5-c, the processor will

save the context of VM-Shim (step 2©) and transfer control to

the hypervisor. When hypervisor finishes handling VMEXIT,

it resumes the VM-Shim from where it is interrupted (step

3©), then the VM-Shim continues execution as normal. The

steps 4©, 5© and 6© in figure 5-c are similar as steps 2©, 3©

and 4© in figure 5-a, correspondingly. Meanwhile, the VM-

Shim itself will not trigger exceptions itself. First, the VM-

Shim avoids to use any privilege instructions that would cause

VMEXIT. Second, the hypervisor must pin the memory used

by the VM-Shim to avoid page fault. Double fault will be

treated as fatal error.

4.7. Summary of HyperCoffer Architecture
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Figure 6: Hardware/software Modifications for HyperCoffer

Figure 6 shows the hardware and software components of

HyperCoffer. The secure processor substrate includes AISE

encryption engine A© and BMT engine B©. Counter data is ac-

cessed through split counter cache C©, while hash data shares

cache with ordinary data. Each cache line is tagged with

VMID D© E© of the owner VM, and data in a cache line can be

accessed only by its owner. Since both counters and hashes

are indexed by GPA, a g-TLB F© is added to optimize address

translation from GPA to HPA.

A VM-Table is introduced to store protection information

of currently running VMs. Each entry contains {VMID, Kvm,

HRootvm, Addrcnt , AddrBMT , Addrshim}. The VM-Table is

saved in CPU protected memory region G©, and most recent

used entries are cached on chip J©. Three new instructions,



vm_install, vm_snapshot and vm_uninstall are introduced to

operate the VM-Table. EPT memory H© is used to store EPT,

and can only be modified by ept_st. It triggers invalidation

of cache when address mapping is changed to defend against

intra-VM remapping attack, as stated in section 4.4. The in-

validation is delayed to TLB update I© for optimization.

Registers K© of HyperCoffer include two non-volatile reg-

isters. One is used for generating LPID to ensure that LPID is

unique for each page, even after system rebooting. The other

is used for logging that gets updated every time a VM is boot-

ed/resumed or a snapshot is made, triggered by vm_install

and vm_snapshot, respectively. New instructions are listed in

table 2.

In order to support the VM-Shim mechanism, the logic of

mode switching L© is changed to enable VM-Shim running

in-between the hypervisor and a VM. In addition, two new in-

structions are added to switch mode from VM-Shim to host or

guest, by shim_to_host and shim_to_guest, respectively. VM-

Shim M© is responsible to exchange data between the hyper-

visor and VMs, by using two new instructions: raw_ld and

raw_st. Meanwhile, the hypervisor N© needs to be modified

to access guest’s data through the interface provided by VM-

Shim. Thus the guest OS can remain unchanged.

5. VM-Shim: Interactive Data Specification
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When a VMEXIT occurs, the VM needs to provide the hy-

pervisor minimal yet sufficient information to correctly han-

dle the VMEXIT. When the hypervisor finishes, it sends the

results back to the VM. There are different types of VMEXIT,

each type requires different sets of interactive data. The VM-

Shim specification defines the data sets for both the VM-Shim

and the hypervisor as an interface. A VM-Shim logically di-

vides its memory into two portions: a protected (encrypted)

memory area and an unprotected (plain) memory area that

assists the interactive data. It uses ld_raw and st_raw instruc-

tions to transfer data between the two memory regions. The

interactive data contains three parts: CPU context, I/O data

and auxiliary data.

5.1. CPU Context

Data in CPU context, including registers in VMCS and gen-

eral registers, cannot be accessed by the hypervisor directly.

Instead, VM-Shim is responsible to exchange data between

the hypervisor and VM. For different types of VMEXIT, VM-

Shim only allows necessary context fields to be accessed by

the hypervisor.

5.2. Disk I/O

Data on disks is encrypted with the same way as that in

memory. Hence, no encryption or decryption is required dur-

ing disk reading or writing. However, to protect against re-

play attack, VM-Shim needs to do integrity checking and

maintain the merkle hash tree to ensure the integrity of disk

I/O data. The hashes are stored in the same VM image file

with VM data. During VM booting, VM-Shim is required

to cooperate with the hypervisor to fetch all the hash value

in non-leaf nodes and keeps them in memory. During DMA

of disk read, the disk copies both the data and counter into

guest’s memory. The VM-Shim then uses ld_raw with de-

cryption enabled, and checks the loaded disk data by calculat-

ing its hash value.

5.3. Network I/O

Network I/O is handled differently from disk I/O as Hy-

perCoffer should not send an encrypted version of data to

the communicating peer (e.g., a web client), which usually

does not have the key to decrypt the data. As typical security-

sensitive applications usually do application-level encryption

like SSL, HyperCoffer, like other similar systems [16, 23],

does not protect data sent out through network.

VM-Shim interposes network I/O to exchange the data.

When data is read from a NIC device, it is first copied to a

shadow buffer in VM-Shim. The VM-Shim then loads the

data using the raw_ld instruction to the VM’s buffer based on

the I/O request. When data is written to a NIC device, VM-

Shim uses the raw_st instruction to send data in plain-text.

Note that even for direct assignment or single-root I/O vir-

tualization (SR-IOV) NIC devices, current virtualization hard-

ware can still trap the I/O operations into the hypervisor. In

HyperCoffer, a guest OS can also support SR-IOV by de-

veloping a NIC driver for optimization. More specifically,

the driver of guest OS needs to be modified to use raw_st

and raw_ld instructions to exchange both meta-data (e.g., I/O

command) and raw data between the processor and the device.

Thus the shadow buffer is not needed and the I/O performance

can be improved.

5.4. Auxiliary Information

There are cases where the data to be exchanged are not

present in the VM. For example, when a hypervisor needs its

VM’s page table entries to do address translation, the VM’s

page table entries might not be present. This requires coop-

eration among the VM-Shim, the VM and the hypervisor to

handle such cases. In the followings, we will use a relative

complex instruction from x86 (e.g., rep ins io-port mem-addr)

as an example to show how the VM-Shim handles it.



The instruction mentioned above repetitively load data

from disk to memory, with the repetition number being in-

dicated in the %ecx register, the disk I/O port being specified

in io-port and the starting memory address (in the VM) in

mem-addr. In most commercial hypervisors, the I/O instruc-

tion will cause a trap to the hypervisor, which gets the virtual

address of the instruction pointer (IP). Then the hypervisor

needs to translate address of both IP and the target memory

address from GVA to GPA by walking the VM’s page table.

However, it is possible that the target memory region starting

from mem-addr might not be aligned and might cross multi-

ple pages. In this case, the hypervisor needs to inject a page

fault to the VM to let the VM fill the translation.

The VM-Shim interposes the above process and exchange

the data with the hypervisor. VM-Shim avoids the need of

guest page table walking for decoding the I/O instruction by

fetching the opcode in the VM context during the trap. On

interposing the VM trap, VM-Shim proactively translates the

mem-addr from GVA to GPA by walking the VM’s page ta-

ble. It then puts the plain-text version of addresses to mem-

ory using st_raw. If a translation cannot be done due to the

absence of page table entries, VM-Shim just puts an invalid

entry. When the hypervisor starts to execute, it fetches the

addresses VM-Shim puts. If necessary address translation is

absent, the hypervisor will again inject a page fault to the

VM, which will resolve the fault and retry the I/O instruction.

The retrying will again trap to VM-Shim first, which can now

do the translation and put the obtained address translation to

make the hypervisor be able to emulate the I/O instruction.

Similarly, the VM-Shim exchanges a VM’s data to the hy-

pervisor and external environment according to the context.

It completely eliminates the need for the hypervisor to access

a guest VM’s memory and also makes it easy to reason about

each data interaction.

6. VM Life-cycle Protection

6.1. Secure Processor Initialization

When a system boots up, the processor initializes a region

of the main memory to store VM-Table. It randomly gener-

ates a key as Kmem and initializes BMT over the region, with

its root hash saved on-chip. Once the reserved memory region

is initialized, the system continues booting as usual.

6.2. VM Bootup & Shutdown

Before booting a VM, the owner of the VM needs to offer

following components, which are generated offline by users

using our provided tool:

• A disk image of the VM. The metadata of the disk includes

the start address of the counter zone and hash zone, as well

as the root hash of the BMT.

• An initial memory image of the VM. The image contains

logic of VM-Shim and is formatted by generating coun-

ters and BMT and encrypting the data part using Kvm. An

wrong formatted image will be denied by a secure proces-

sor.

• Kvm, which is encrypted by the SKcpu of host chip.

• A vm_vector, which is encrypted by Kvm. The vector sum-

marizes the initial VM memory image and is used by the

the processor to verify the image.

The process of VM booting includes following steps:

1. The hypervisor allocates memory pages for the VM, ini-

tializes its page tables, and loads the VM’s initial memory

image into the allocated pages.

2. The hypervisor invokes vm_install instruction and passes

the encrypted Kvm and vm_vector as arguments.

3. The secure processor allocates a slot in the VM-Table, and

decrypts the Kvm and vm_vector into the slot. It then re-

turns the slot index as VMID to the hypervisor.

4. The hypervisor then issues VMENTER with the VMID to

start the VM. All the essential information for booting the

VM are now ready.

5. During initialization, the VM will get the BMT root hash

of the disk image. After that, each disk read can be

checked to ensure disk data’s integrity.

A user can verify the identity of a running VM by putting

some secrets in the VM, and challenging it during runtime.

The termination process of a VM is much simpler. When a

VM is shutting down, it does not have to zero all the memory

pages, since they are encrypted already. After a VM is shut-

down, the hypervisor only needs to execute vm_uninstall to

revoke the slot of VM-Table.

6.3. VM Snapshot & Restore

When a hypervisor takes a snapshot of a VM, it first saves

the VM’s current CPU context, memory data and disk data,

all in cipher-text. It then issues vm_snapshot to get the VM’s

vm_vector, which is encrypted by the Kvm. The vm_vector is

later used to restore the snapshot by using vm_install, similar

as booting a VM.

There is one difference between VM booting and VM

restoring. A VM can boot up from any disk image, as long

as the disk image is encrypted using Kvm and has not been

tampered with. On the other hand, a VM can only boot

up from the disk image that is used during the snapshotting.

Since when a VM is running, the disk’s metadata (which in-

cludes the root hash of the disk’s BMT) is already kept in

VM-Shim’s memory. When the VM resumes, it still uses that

HRootdisk, which has only one corresponding disk image.

6.4. VM Migration

VM migration is similar to snapshot and restore. The tar-

get machine has already got the Kvm of the VM which is en-

crypted using the chips’ SKcpu in advance. Thus it can exe-

cute vm_install to install the encrypted vm_vector. The key

distribution is done offline by the VM owner so that no key

exchange is needed. A target machine is trusted if and only if



it has the encrypted Kvm. Thus the VM migration is done by

the hypervisor without any involvement of VM-Shim.

6.5. Memory Sharing and VM Introspection

Encrypting all VM’s memory prohibits content-based

memory sharing and deduplication among VMs, as well as

some VM introspection, since the hypervisor can only see en-

crypted version of VM’s data.

7. Security Analysis

7.1. Data Privacy and Integrity

In HyperCoffer, a hypervisor is able to access all of a VM’s

memory data. However, it can only get cypher-text and will

cause BMT checking error if it tampers with the data. Mean-

while, since the data in memory is encrypted, the system can

also defeat physical attacks that access memory directly, e.g.,

sniffing system bus or even using offline methods such as

cold-boot attack.

A malicious hypervisor may swap a VM’s data from mem-

ory to the disk, tamper with the data, and swap back to mem-

ory. This attack can be defeated since the BMT protection

is in the space of guest physical address, which means that a

data block is protected by the BMT no matter it is in memory

or disk.

Another possible attack is inter-VM remapping attack,

which can be made by a hypervisor with an accomplice VM.

As a VM’s data is decrypted in cache, a malicious hypervisor

may map a VM’s memory page to a conspiratorial VM, and

then expect a cache-hit when the bad VM accesses the page

and thus bypasses the protection mechanisms. This attack

will also fail since the cache is tagged with each VM’s VMID.

Thus a VM cannot access another VM’s data in cache.

Similarly, intra-VM remapping attack is done by remap-

ping different pages of the same VM. If the pages are in cache,

then the BMT check is bypassed and the integrity of VM’s

memory is violated. HyperCoffer defeats this attack by inval-

idating cache at the time of remapping (EPT modification), as

stated in Section 4.4.

Even if an attacker has an emulator of the processor and

run the whole VM image on it, the VM’s data is still safe as

long as the private key of processor is not obtained.

7.2. Security of VM-Shim

A VM-Shim resides in the same protected context with its

VM but is isolated from the VM: a VM-Shim has separated

address space but is granted with access to arbitrary memory

in its corresponding VM; oppositely, a VM cannot access the

memory space of its VM-Shim. Each VM-Shim instance only

does very little work and is usually quite small (in the scale

of one to two thousands LOCs). Hence, it is very easy to for-

mally verify its correctness. There is exactly one VM-Shim

for each VM and each VM-Shim is protected by the proces-

sor. Hence, a security breach of a single VM-Shim cannot

affect the security of other VMs.

The VM-Shim is also non-bypassable. Each time there is

a VM exception, the processor will immediately transfer con-

trol to the entry address of VM-Shim that is saved in the VM-

Table. The memory of VM-Shim is also protected by the en-

cryption and BMT. Meanwhile, the VM-Shim is trusted by

each guest OS in our threat model. Any behavior of the VM-

Shim is considered as following the user’s intention.

7.3. Other Security Issues

As discussed in section 3.3, HyperCoffer does not ensure

the availability of a VM. A malicious hypervisor may slow-

down the execution of a VM by limiting its resource, or even

stop it by not scheduling it at all. Meanwhile, it can also give

wrong result when processing VMEXIT. However, HyperCof-

fer ensures that these attacks on availability cannot get user’s

private data or tamper with the execution of a VM.

The attack surface composed of interactive data between

a VM and the hypervisor is quite small. Most VMEXITs

just need a few pieces of data, e.g., contents of CR0 or %eax.

Thus, the VM data exported through VMEXITs is very lim-

ited, which is far from enough to mount a security attack.

A malicious hypervisor may manipulate VM rollback at-

tack by taking a snapshot of a VM and repeatedly restoring

it. HyperCoffer uses logging and auditing to defend against

VM rollback attack [40]. The log cannot be tampered with

since each time a secure processor executes vm_install or

vm_resume, the hash of the vm_vector will be accumulatively

chained in a non-volatile register, which can be audited by the

user. Meanwhile, the memory snapshot image is encrypted

and protected by BMT. The root hash of BMT is stored in

vm_vector, which is also encrypted by Kvm. Thus, as long as

the Kvm is safe, the snapshot is protected.

We currently adopted a fail-stop model in the paper. Before

halting, the abnormal behavior will be logged and the hash of

log will be saved in a non-volatile register in the processor for

later auditing.

Currently we support multi-core chips, but not multi-chip

processors. The challenge is that the data encryption mech-

anism used in HyperCoffer does not suit data exchanging

among chips. SENSS [28] utilizes the Cipher Block Chain-

ing mode of the advanced encryption standard (CBC-AES)

for encryption/decryption of shared bus between chips. Sup-

porting multi-chip processors and multi-processor will be our

future work.

8. Evaluation

We implemented a working prototype by modifying

QEMU full-system emulator to validate the applicability of

HyperCoffer. A VM-Shim is implemented to support unmod-

ified Linux and Windows VM, which can run both on a real

machine and QEMU. In a real machine, it runs in the host

mode together with Xen to simulate the control transitions
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Figure 8: Performance Overhead on both Simulated and Real Machine

among the hypervisor, VM and VM-Shim. A user-level agent

consisting of 200 LOCs is implemented in the management

tools of Xen to assist the fetching and storing of counters and

hashes for HyperCoffer. The VM-Shim currently consists of

around 1,100 LOCs. We also change around 180 LOCs in

Xen to secure VM booting and cooperate with the data ex-

change mechanisms in VM-Shim.

8.1. Performance Evaluation on Simulator

As there is currently no cycle-accurate full-system simula-

tor that can run a virtualized platform, we use QEMU as a

full-system simulator to collect traces and dinero-IV [41] to

do trace-based simulation. We use a set of benchmarks from

SPECINT-2006. These benchmarks are run with reference

input set. Each benchmark is simulated for 1-billion instruc-

tions inside the VM, after skipping 10-billion instructions. As

the number of benchmarks is too large for exposure, we only

report a set including astar, bzip2, gcc, lbm, libquantum, mcf,

milc, sjeng, sphinx3, and h264ref, similar as prior work [15].

We model an in-order processor with split caches for data

and counter. Specifically, the processor is modeled as single-

core as the evaluated benchmarks are single-threaded. The

last level data cache is 8MB in size, 8-way set-associative

and has a counter cache with 64KB and 8-way set-associative.

All caches uses the LRU replacement policy and each block

is with 64 bytes. The main memory size is 512MB with an ac-

cess latency of 350 cycles. The encryption engine uses AES

with a latency of 80 cycles. The latency of each non-memory

instruction is counted as one cycle. The encryption seed con-

tains a 64-bit per-page LPID and a 7-bit per-block counter.

A total of 64 counters and 1 LPID are co-located within one

chunk, which corresponds to a 4KB memory page. The de-

fault hash size is 128 bits. The simulated machine runs Xen-

4.0.1 as the hypervisor, Debian-6 and Windows XP-SP2 as

the OSes for the VMs.

Figure 8a shows the performance overhead caused by Hy-

perCoffer. The average overhead is about 5.4%, in which

2.4% is due to AISE and BMT, and 3.0% is due to the VM-

Shim.

8.2. Performance Evaluation on Real-machine

To evaluate the performance overhead of VM-Shim, we

run several benchmarks on a real machine without a secure

processor substrate. The real machine has an AMD quad-core

CPU with 4GB memory and a 100Mb NIC and 320GB disk,

on which we compare the performance of Linux and Win-

dows VMs runs upon VM-Shim against vanilla Xen-4.0.1.

Each VM is configured with one or more virtual CPUs, 1GB

memory, a 20GB virtual disk and a virtual NIC. The VMs

run unmodified Debian-Linux with kernel version 2.6.31 and

Windows XP with SP2, both are with x86-64 versions.

We use a set of application benchmarks for Linux VMs,

including Linux kernel build (kbuild), dbench-3.0.4, netperf

and memcached-1.4.5. We also used SPECjbb-2005 to evalu-

ate the server side performance of Java runtime environment

in the Windows VM. We further evaluate the performance

and scalability of VM-Shim by running all the benchmarks

and applications with multiple cores.

Figure 8b shows the performance of VM-Shim on a single-

core and a quad-core machine. The performance overhead

for Kbuild is rather low, because there are very few VM traps.

The overhead of dbench is also small because the disk and

memory use the same encryption mechanism and same key

to encrypt/decrypt, thus the hypervisor can do the copy be-

tween the memory and disk directly. The network perfor-

mance overhead is relatively high, since VM-Shim needs to

interpose and reveal data during package sending and receiv-

ing. On the quad-core machine, the netperf is bounded by

network bandwidth, thus the performance degradation is less

than the one on single-core machine. The performance over-

head for SPECjbb is quite low, because it rarely interacts with

the hypervisor and VM-Shim.

8.3. Storage Overhead

For each 4KB memory page, there is a 64-bit LPID and 64

7-bit counters needs to be saved in memory. For example, on

a machine with 4GB main memory, 64MB memory is needed

for the counters (1.56% overhead). Meanwhile, the BMT of



the 64MB counters occupies 128 bits per cache line (64B),

which takes another 16MB memory (0.39% overhead). The

total memory overhead is 1.95%. The disk also needs 1.56%

storage for seeds. The overhead of hash is even smaller, since

the hash tree costs 128 bits per 512KB. The total storage over-

head of disk is 1.61%.

9. Conclusion

This paper considered a strong adversary model for multi-

tenant cloud and proposed a hardware-software framework

called HyperCoffer that transparently guards the privacy and

integrity of tenants’ VMs against untrusted hypervisor and

even physical attacks. HyperCoffer carefully considered de-

sign and implementation issues with commercial off-the-shelf

virtualization stack and extended existing processor virtual-

ization with memory encryption and integrity checking as

well as the VM-Shim mechanism to secure control transitions

and data interaction. The resulted system retains transparency

with guest VMs, is non-intrusive to commercial hypervisor,

retains VM management operations and makes few assump-

tions on external memory and devices. Performance evalua-

tion shows that the performance overhead is small.
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