
This paper is included in the Proceedings of the
2020 USENIX Annual Technical Conference.

July 15–17, 2020
978-1-939133-14-4

Open access to the Proceedings of the
2020 USENIX Annual Technical Conference

is sponsored by USENIX.

Harmonizing Performance and Isolation
in Microkernels with Efficient Intra-kernel

Isolation and Communication
Jinyu Gu, Xinyue Wu, Wentai Li, Nian Liu, Zeyu Mi, Yubin Xia,

and Haibo Chen, Shanghai Jiao Tong University
https://www.usenix.org/conference/atc20/presentation/gu

Harmonizing Performance and Isolation in Microkernels with Efficient

Intra-kernel Isolation and Communication

Jinyu Gu, Xinyue Wu, Wentai Li, Nian Liu, Zeyu Mi, Yubin Xia, Haibo Chen
Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China

Institute of Parallel and Distributed Systems (IPADS), Shanghai Jiao Tong University

Abstract

This paper presents UnderBridge, a redesign of traditional
microkernel OSes to harmonize the tension between messag-
ing performance and isolation. UnderBridge moves the OS
components of a microkernel between user space and ker-
nel space at runtime while enforcing consistent isolation. It
retrofits Intel Memory Protection Key for Userspace (PKU)
in kernel space to achieve such isolation efficiently and de-
sign a fast IPC mechanism across those OS components.
Thanks to PKU’s extremely low overhead, the inter-process
communication (IPC) roundtrip cost in UnderBridge can be
as low as 109 cycles. We have designed and implemented a
new microkernel called ChCore based on UnderBridge and
have also ported UnderBridge to three mainstream microker-
nels, i.e., seL4, Google Zircon, and Fiasco.OC. Evaluations
show that UnderBridge speeds up the IPC by 3.0× compared
with the state-of-the-art (e.g., SkyBridge) and improves the
performance of IPC-intensive applications by up to 13.1×
for the above three microkernels.

1 Introduction

The microkernel OS design has been studied for decades [3,
27, 35, 44, 49, 52, 70]. Microkernels minimize code running
in supervisor mode by moving OS components, such as file
systems and the network stack, as well as device drivers, into
isolated user processes, which achieves good extensibility, se-
curity, and fault isolation. Other than the success of microker-
nels in safety-critical scenarios [1, 40, 66], there is a resur-
gent interest in designing microkernels for more general-
purpose applications, such as Google’s next-generation ker-
nel Zircon [3].

However, a cost coming with microkernel is its commonly
lower performance compared with its monolithic counter-
parts, which forces a tradeoff between performance and iso-
lation in many cases. One key factor of such cost is the com-
munication (IPC) overhead between OS components, which
is considered as the Achilles’ Heel of microkernels [30, 33,
51, 53, 62, 76]. Hence, there has been a long line of re-
search work to improve the IPC performance for microker-
nels [19, 30, 36, 44, 50, 52, 62, 79, 82]. Through a com-

bination of various optimizations such as in-register param-
eter passing and scheduling avoidance, the performance of
highly optimized IPC has reached less than 1500 cycles per
roundtrip [13]. The state-of-the-art SkyBridge IPC design,
which retrofits Intel vmfunc to optimize IPCs, has further re-
duced the IPC cost to around 400 cycles per roundtrip [62].
However, such cost is still considerable compared with the
cost of invoking kernel components in monolithic kernels
(e.g., calling function pointers takes around 24 cycles).

There is always a tension between isolation and perfor-
mance for OS kernel designs. In this paper, we present a
new design named UnderBridge, which redesigns the run-
time structure of microkernels to harmonize performance
and isolation. The key idea is building isolated domains in su-
pervisor mode while providing efficient cross-domain inter-
actions, and enabling user-space system servers1 of a micro-
kernel OS to run in those domains. A traditional microkernel
OS usually consists of a core kernel in supervisor mode and
several system servers in different user processes. With Un-
derBridge, a system server can also run in an isolated kernel
space domain besides a user process. The system servers that
run in kernel can interact with each other as well as the core
kernel efficiently without traditional expensive IPCs, and ap-
plications can invoke them with only two privilege switches,
similar to a monolithic OS. Although the number of isolated
domains is limited and may be smaller than the number of
system servers, UnderBridge supports server migration. The
microkernel can dynamically decide to run a server either in
a user process or a kernel domain based on how performance-
critical it is. However, it is challenging to efficiently provide
mutually-isolated domains together with fast cross-domain
interactions in kernel space.

Protection Keys for Userspace (PKU [7], Section-2.7,
Volume-3), also named as Intel memory protection keys
(MPK), has been introduced in recent Intel processors and
investigated by researchers to achieve intra-process isolation
in user space [29, 39, 64, 77]. As the name “Userspace” in-
dicates, PKU is a mechanism that appears to be only effec-

1We name the microkernel OS components implementing system func-
tionalities as system servers. File system and drivers are typical examples.

USENIX Association 2020 USENIX Annual Technical Conference 401

tive in user space. After a detailed investigation, we observed
that no matter in kernel space (Ring-0) or user space (Ring-

3), PKU-capable CPUs transparently enforce permission

checks on memory accesses only if the User/Kernel (U/K) bit

of the corresponding page table entry is User (means user-

accessible). Hence, PKU, as a lightweight hardware feature,
also offers an opportunity to achieve efficient intra-kernel
isolation if all the page table entries for kernel memory are
marked with U bit instead of K bit. However, marking ker-
nel memory as user-accessible is dangerous since unprivi-
leged applications may directly access kernel memory. Fortu-
nately, today’s OS kernels are usually equipped with kernel-
page-table-isolation (KPTI) when preferring stronger secu-
rity guarantees, including defending against Meltdown-like
attacks [20, 55] and protecting kernel-address-space-layout-
randomization [8, 42]. User processes and the kernel use dif-
ferent page tables with KPTI, so marking kernel memory as
user-accessible in a separate page table does not risk allow-
ing applications to access kernel space.

Hence, UnderBridge allocates an individual page table for
the kernel and builds isolated execution domains atop MPK
memory domains in kernel space. Unlike software fault iso-
lation (SFI), guaranteeing memory isolation with MPK hard-
ware incurs nearly zero runtime overhead. Meanwhile, a
new instruction, wrpkru, can help switching domains by writ-
ing a specific register, PKRU (protection key rights register
for user pages), which only takes 28 cycles. Thus, domain
switches can be quick. With UnderBridge, we design and im-
plement a prototype microkernel named ChCore, which com-
prises a core kernel and different system servers similar to
existing microkernels. ChCore still preserves the IPC inter-
faces with fast domain switch for the servers but embraces
better performance by significantly reducing the IPC costs.

However, we find merely using MPK in kernel fails to
achieve the same isolation guarantee as traditional microker-
nels. On the one hand, since MPK only checks read/write per-
missions when accessing memory but applies no restrictions
on instruction fetching, any server can execute all the code
in the same virtual address space. Thus, an IPC gate (a code
piece), which is used in UnderBridge to establish the con-
nection between two specific servers, can be abused by any
server to issue an illegal IPC. To address the problem, Under-
Bridge authenticates the caller of an IPC gate through check-
ing its (unique) memory-access permission and ensures the
authentication is non-bypassable by validating a secret token
at both sides of the IPC gate.

On the other hand, system servers running in kernel space
can execute privileged instructions. Although the servers
(initially running in user space) should not contain any
privileged instruction, such instructions may arise inadver-
tently on x86, e.g., being composed of the bytes of adjacent
instructions. Thus, a compromised server may use return-
oriented programming (ROP) [21, 69] to execute them. Tradi-
tional microkernels confine system servers in user processes,

which, inherently, prevent them from executing privileged in-
structions and exclude them from the system’s trusted com-
puting base (TCB). To do not bloat the TCB, we also pre-
vent the in-kernel system servers from executing any privi-
leged instruction. We leverage hardware virtualization and
run ChCore in non-root mode and deploy a tiny secure mon-
itor in root mode. For most privileged instructions that are
not in the critical path, we configure them to trigger VMExit

and enforce permission checks in the monitor. For others, we
carefully handle them using binary scanning and rewriting.

We have implemented ChCore on a real server with Intel
Xeon Gold 6138 CPUs and conducted evaluations to show
the efficiency of UnderBridge. To demonstrate the general-
ity of UnderBridge, we have also ported it to three popu-
lar microkernels, i.e., seL4 [14], Google Zircon [4], and Fi-
asco.OC [2]. In the micro-benchmark, UnderBridge achieves
3.0× speedup compared with SkyBridge. In IPC-intensive
application benchmarks, UnderBridge also shows better per-
formance than SkyBridge (up to 65%) and improves the per-
formance of the above three microkernels by 2.5×∼13.1×.

In summary, this paper makes the following contributions:

• A new IPC design called UnderBridge that retrofits In-
tel MPK/PKU in kernel to achieve ultra-low overhead
interactions across system servers.

• A microkernel prototype ChCore which uses Under-
Bridge to move system servers back to kernel space
while keeping the same isolation properties as tradi-
tional microkernels.

• A detailed evaluation of UnderBridge in ChCore and
three widely-used microkernels, which demonstrates
the efficiency of the design.

2 Motivation

2.1 Invoking Servers with IPCs is Costly

To obviate the severe consequences incurred by crashes or
security breaches [9, 22, 24], the microkernel architecture
places most kernel functionalities into different user-space
system servers and only keeps crucial functionalities in the
privileged kernel, as depicted in Figure-1. Therefore, a fault
in a single system server can be caught before it propagates
to the whole system.

However, compared with a monolithic OS like Linux, a
system service invocation usually becomes more expensive

Application
System

Server A

System

Server B

Core Kernel

Ring-0

Ring-3

Process-1 Process-2 Process-3

E.g., SQLite3 E.g., xv6fs E.g., RAMdisk

Figure 1: A simplified microkernel architecture. Even without
KPTI, calling a server with IPC requires two user-kernel roundtrips
with two process switches. A vertical arrow represents one
roundtrip, and a dotted line means two process switches.

402 2020 USENIX Annual Technical Conference USENIX Association

in such an OS architecture. Figure-1 shows a service invo-
cation procedure that involves two system servers and thus
leads to two IPCs. In this case, a microkernel requires four

roundtrips between user and kernel in total, while Linux only
requires one (i.e., the leftmost arrow between the application
and the OS). It is because Linux invokes different kernel com-
ponents (like system servers in microkernel) directly through
function calls.

20%

40%

60%

80%

100%

Zircon seL4
w/ kpti

seL4
w/o kpti

IPC Cost
Real Work in Servers

(a)

Parts (cycles) w/o KPTI w/ KPTI

Privilege Switch 158 690
Process Switch 295 Included above
Others 277 320

Total 730 * 1010

*The result conforms to the officially reported
data (722∼736) [13].

(b)

Figure 2: (a) Invoking servers with IPCs is expensive. (b) A break-
down of seL4 fast-path IPC.

To measure the performance cost of server invocations
with IPC, we run SQLite3 [15] on Zircon and seL4 (§ 6 gives
the detailed setup). We measure (i) the total time spent on
invoking system servers (i.e., an FS server and a RAMdisk
server) and (ii) the effective time used in system servers for
handling the requests. The difference between the two time
durations is considered as the IPC cost. As presented in Fig-
ure 2(a), the IPC cost is as high as 79% in Zircon. Even in
seL4, which uses highly-optimized IPCs, 44% of the time is
spent on IPC when KPTI enabled (38% without KPTI).

Moreover, a system functionality may involve even more
IPCs to invoke multiple system servers. For instance, launch-
ing an application requires 8 IPC roundtrips (among Shell,

Loader, FS, and Driver) on Zircon. In contrast, it only needs
one or two system calls on Linux (e.g., fork + exec). There-
fore, invoking system servers with IPCs is time-consuming
in microkernels, which motivates our work in this paper.

2.2 IPC Overhead Analysis

To further understand the overhead of IPC, we break down
and measure the cost of each step in the IPC procedure in
seL4, which is known to be an efficient implementation of
microkernel IPC. Here we use the ideal configuration by re-
ferring to [13] and measure a one-way IPC (not a roundtrip)
without transferring data.

We find that the direct cost of the IPC consists of three
main parts as shown in Figure-2(b). The first part is the priv-
ilege switch. A user-space caller starts an IPC by using a
syscall instruction to trap into the kernel. The kernel needs
to save the caller’s context, which will be restored when re-
suming the caller. To invoke the target user-space callee, the
kernel transfers the control flow with a sysret instruction after
restoring the callee’s context. The second part is the process
switch. The major cost in this part is the CR3 modification in-
struction (270 cycles). Since the caller and callee are isolated

in different user-space processes (different address spaces),
the kernel has to change the address space from the caller
to the callee. With KPTI enabled, the kernel further needs to
change the address spaces twice during the privilege switch,
which inflates the overhead. The third part is other logics in
IPC, such as permissions and fast-path conditions checks.

Besides its inherent cost, an IPC will inevitably cause pol-
lution to the CPU internal structures such as the pipeline,
instruction, data caches, and translation look-aside buffers
(TLB), which has been evaluated in prior work [18, 32, 62,
71]. According to [71], the pollution caused by frequent priv-
ilege switches can degrade the performance by up to 65% for
SPEC CPU programs.

In summary, the switches of privilege and address space
in IPC bring considerable overhead, which motivates our
lightweight IPC design to remove these switches.

2.3 Using Intel MPK in Kernel

Background: Intel memory protection keys (MPK) [7] is a
new hardware feature to restrict memory accesses. MPK as-
signs a four-bit domain ID (aka, protection key) to each page
in a virtual address space by filling the ID in previously un-
used bits of page table entries. Thus, MPK can partition user
pages within a virtual address space into at most 16 memory
domains. To determine the access permissions (read-only,
read-write, none) on each memory domain, it introduces a
per-core register, PKRU, and a new instruction, wrpkru, to
modify the PKRU register in only 28 cycles. It is worth men-
tioning that MPK checks on memory accesses incur nearly
zero runtime overhead [39, 77]. Nevertheless, MPK does not
enforce permission checks on execution permission. One ex-
ecutable memory page is always executable to any domain,
even if PKRU forbids the domain from reading the page.
Observation: After a detailed investigation, we observe that
no matter in Ring-0 or Ring-3, MPK enforces permission
checks on any user-accessible memory page. To enable MPK
checks in Ring-0, the User/Kernel (U/K) bits of all the corre-
sponding page table entries in a four-level page table have to
be set as User (i.e., 1). If there exists one entry that contains
the Kernel bit at any level, MPK will not check the access
on the corresponding memory pages. Furthermore, the Su-
pervisor Mode Access Prevention (SMAP) and Supervisor
Mode Execution Prevention (SMEP) should also be disabled
for accessing or executing these pages (tagged with User) in
Ring-0.

2.4 Building Isolated Domains

There are many approaches to build lightweight and isolated
domains. SFI (Software Fault Isolation), which has been ac-
tively studied over 20 years [34, 46, 60, 68, 80, 87], is one
of the most mature candidates. However, although being a
general solution to achieve memory/fault isolation, SFI in-
curs non-negligible runtime overhead due to excessive code
instrumentations. For example, two representative studies

USENIX Association 2020 USENIX Annual Technical Conference 403

show that SFI introduces around 15% overhead for SPEC
CPU programs on average (Table-2 in [68]), even with the
help of the latest boundary-checking hardware MPX (Figure-
3 in [46]). Some other approaches [48, 88] uses x86 segmen-
tation for memory isolation, which avoids software checks
on memory accesses and is suitable for sandbox execution,
but it is not widely used anymore [68].

Instruction Cost (cycles)

Indirect Call + Return 24
syscall + sysret 150
Write CR3 (no TLB flush) 226
vmfunc (switch EPT) 146
wrpkru 28

Table 1: Cost comparison of selected instructions.

Leveraging advanced hardware features to build isolated
domains can achieve better runtime performance. For exam-
ple, prior work [39, 46, 56, 57, 62, 65, 77] utilizes (extended)
page tables to provide isolated domains in user space and ex-
ploits instructions like vmfunc and wrpkru for fast domain
switches. We list the costs of these frequently-used instruc-
tions in Table-1. The cost of wrpkru is the closest to indirect

call, which is used to invoke kernel components (with func-
tion pointers) in monolithic kernels. Therefore, considering
that MPK is applicable to the kernel and has good perfor-
mance property, we propose that MPK can be leveraged to
implement an efficient fine-grained isolation mechanism in
the kernel.

3 UnderBridge

Traditional IPC

Application Server-C

IPC Gate

Core Kernel

E
x
e
c
u
ti
o

n
 D

o
m

a
in

-1

E
x
e
c
u
ti
o

n
 D

o
m

a
in

-2

Server-B

Execution Domain-0 (Privileged)

Server-A

IPC Data

M
e
m

o
ry

 D
o

m
a
in

-0

Memory

Domain-1

Memory

Domain-2

Memory Domain-3

(Shared by A & B)

U
s
e
r

M
o

d
e

K
e
rn

e
l
M

o
d

e

Code Data

Process Process

Figure 3: The overview of ChCore based on UnderBridge.

The goal of UnderBridge is to optimize the synchronous
IPC2 while simultaneously maintaining strong isolation. An

2Synchronous IPC is commonly used in microkernels, especially when
calling system servers. After issuing a synchronous IPC, the caller blocks
until the callee returns.

intuitive design is adopting the MPK-based intra-process iso-
lation [39, 77] to run system servers within an application ad-
dress space. However, this design has three major problems.
First, it requires to map a server into multiple applications’
page tables, which makes updating the server’s memory map-
pings especially expensive (i.e., update all the page tables).
Second, its cost to setting up the IPC is non-negligible due
to intensive page table modifications. Third, it restricts the
applications’ ability to use the whole address space and the
MPK hardware freely.

Instead, UnderBridge boosts IPC performance by putting
the system servers, which are user-space processes in tradi-
tional microkernels, back into kernel space. Figure-3 shows
the system overview. The core kernel resembles the tra-
ditional microkernel, which provides crucial functionali-
ties such as managing memory protection, capability en-
forcement, scheduling, and establishing IPC connections.
With UnderBridge, system servers can run in kernel space
(e.g., Server-A/B) but are confined in isolated environments
(called execution domain). UnderBridge makes the core ker-
nel and in-kernel system servers share the same (kernel) ad-
dress space while leveraging Intel MPK to guarantee mem-
ory isolation.

To use MPK in kernel space, UnderBridge tags all the ker-
nel memory pages with “User” bits in the kernel page table,
as introduced in § 2.3. However, marking kernel memory as
user-accessible enables unprivileged user-space applications
to access kernel memory directly. UnderBridge prevents this
by allocating a separate page table to each application. An
application’s page table does not contain the kernel space
memory except for a small trampoline region (tagged with
“Kernel”), which is used for privilege switch (e.g., syscall).

Building IPC connections with in-kernel system servers
takes the following steps. First, a system server proactively
registers a function address (IPC function) in the core kernel
before serving requests. The core kernel will check whether
the address is legal, i.e., both executable and belonging to
the server. Second, another server can ask the core kernel to
establish an IPC connection with the registered server. Third,
the core kernel generates an IPC Gate, which helps to accom-
plish the IPC function invocation.

If an application needs to invoke the in-kernel server, it
also needs to establish the connection first. Later, it invokes
the system call for IPC and traps into the core kernel. Then,
the kernel will help to invoke the requested server via the
corresponding IPC gate (between the kernel and the server).

3.1 Execution Domains

As shown in Figure-3, UnderBridge constructs isolated ex-

ecution domains over MPK memory domains and confines
each in-kernel system server in an individual execution do-
main. Specifically, UnderBridge builds 16 execution do-
mains in kernel space and assigns a unique domain ID
(0∼15) to each of them. Execution domain 0 is specialized

404 2020 USENIX Annual Technical Conference USENIX Association

for running the (trustworthy) core kernel and can access all
the memory. Every other execution domain (1∼15) has a pri-
vate memory domain with a specific ID and can only access
its private memory domain by default. A system server, ex-
clusively running in one execution domain, stores its data,
stack, and heap regions in its private memory domain, which
cannot be accessed by other servers. Nevertheless, its code re-
gion resides in memory domain 0 that can only be read/writ-
ten by the core kernel. In this way, the server cannot read-
/write its own code but can still execute it (i.e., execute-only
memory) as MPK memory domains do not affect instruction
fetching. UnderBridge ensures an execution domain can only
access allowed memory domains by configuring its PKRU

register. It also forbids an execution domain (a server) from
modifying this register by itself (details in § 4.2).

Shared memory between two servers is allocated by al-
lowing them to access a free memory domain together (e.g.,
Memory Domain-3). Shared memory between a server and
the core kernel is achieved by letting the core kernel directly
access the server’s private memory domain. Shared memory
between an application and a server is achieved by mapping
some private memory of the server in the application’s page
table, which does not require a free memory domain.

3.2 IPC Gates

Even though system servers reside in the same kernel address
space, UnderBridge still preserves the well-defined IPC inter-
faces for them. When connecting two system servers (in two
execution domains), the core kernel generates an IPC gate for
them, which resides in memory domain 0. Specifically, it first
allocates a piece of memory for the gate and loads the gate
code, which is small, as shown in Figure-4, into the memory.
Then, it fills specific values (e.g., per-gate SECRET_TOKEN)
into the gate. After that, it gives the gate address to the two
system servers connected by this gate.

Later, during an IPC invocation, the gate transfers the con-
trol flow from a caller to a callee. To be more specific, it saves
the caller’s execution state, switches to the callee’s domain
by setting the PRKU register, and restores the callee’s execu-
tion state. UnderBridge allows the caller and callee to define
their calling conventions (the gates only save/restore neces-
sary state by default), which is flexible and efficient. Trans-
ferring messages by registers and shared memory are both
supported.

Since the system server in UnderBridge only executes
when being called through an IPC gate, we adopt the mech-
anism of decoupling the execution context, which contains
the execution state (e.g., register values), with the schedul-
ing context, which contains the scheduling information (e.g.,
time slice used in the scheduler) [47, 58, 72] and mark those
servers as passive. When an application (T1) invokes the sys-
tem server (T2) through an IPC, T2 inherits T1’s scheduling
context and then starts executing. When T2 invokes another
server (T3), T3 also inherits the scheduling context, which is

originally from T1. Thus, the scheduling overhead is avoided
in the IPC gates.

Besides intra-server, IPC gates also exist between the core
kernel and the servers, which enables the core kernel to in-
teract with the servers. Specifically, those in-kernel system
servers invoke the core kernel’s service through dedicated
IPC gates connected with the core kernel instead of using
syscall instructions. To handle exceptions/interrupts during
the execution of in-kernel servers, UnderBridge provides
similar gates at the beginning of each handler to switch the
execution domain to the core kernel (execution domain 0).

3.3 Server Migration

As MPK provides 16 memory domains in total, UnderBridge
can only support at most 16 execution domains concurrently,
including the reserved one for the core kernel. Neverthe-
less, more system servers can be required, considering the
number of different device drivers. When the number of
concurrent system servers exceeds 15, one solution is time-
multiplexing [64] but will bring non-negligible overhead if
frequently stopping and restarting servers.

Instead, UnderBridge enables server migration, which dy-
namically moves servers between user and kernel space.
Each server is compiled as a position-independent exe-
cutable, and the core kernel assigns disjoint virtual memory
regions for different system servers. Whenever runs in an ex-
ecution domain in the kernel or a user process, a server al-
ways uses the same virtual addresses. So, when migrating a
server between user and kernel, UnderBridge does not need
to do relocations because all the memory references in the
server are always valid (no changes), which significantly sim-
plifies the migration procedure. Moreover, the system call
layer of the LibC used by servers is also modified, and thus
all the syscall instructions are organized in one memory page,
namely the syscall page. When migrating a server from user
space to kernel space, the core kernel overrides this page with
another prepared page which contains IPC gates connected to
the core kernel. Therefore, a server can seamlessly perform
system calls no matter in user or kernel space.

Specifically, there are four steps to migrate a server from
kernel space to user space. First, the core kernel will wait for
the server to enter a quiescent state by blocking new IPC re-
quests to the server temporarily and waiting for the finishes
of on-going ones. Second, it will modify the syscall page

of the server and making the server perform system calls
through syscall instruction instead of IPC gates later. Third,
it will free the execution domain (ID) of the server by set-
ting the domain ID of the server’s page table entries to 0
and flush TLBs. If the server installs shared memory with an-
other in-kernel server (S), the domain ID of the shared mem-
ory will also be freed because the shared memory can use the
domain ID of S in the kernel page table. Last, the core ker-
nel will activate the in-user server and allow clients to issue
IPCs to it. Migrating a server from user space to kernel space

USENIX Association 2020 USENIX Annual Technical Conference 405

 ··· // Save & clear the caller’s states

 mov $SECRET_TOKEN, %r15

 xor %rcx, %rcx

 xor %rdx, %rdx

 /*

 * Replace Line 5-7 with Line-8.

 * Only the legal caller can access

 * ADDR_IN_CALLER.

 */

 rdpkru

 cmp $PKRU_CALLER, %rax

 jne handle_abuse

 mov %rsp, ADDR_IN_CALLER

 mov $PKRU_CALLEE, %rax

 wrpkru

 cmp $SECRET_TOKEN, %r15

 jne handle_abuse

 ··· // Save & clear the caller’s states

 xor %rcx, %rcx

 xor %rdx, %rdx

 mov $PKRU_CALLEE, %rax

 wrpkru // switch to the callee’s domain

 cmp $PKRU_CALLEE, %rax

 jne abort

 ··· // Execute the callee’s function

 xor %rcx, %rcx

 xor %rdx, %rdx

 mov $PKRU_CALLER, %rax

 wrpkru // switch to the caller’s domain

 cmp $PKRU_CALLER, %rax

 jne abort

 ··· // Restore & return to the caller

1

2

3
4
5

6

7

8

9

10
11

12
13

14

15

 ··· // Save & clear the caller’s states

 // Only core-kernel knows SECRET_TOKEN

 mov $SECRET_TOKEN, %r15

 xor %rcx, %rcx

 xor %rdx, %rdx

 // Authenticates the caller’s identity

 rdpkru

 cmp $PKRU_CALLER, %rax

 jne handle_abuse

 mov $PKRU_CALLEE, %rax

 wrpkru

 // Line-10 is removed due to Line-11

 cmp $PKRU_CALLEE, %rax

 cmp $SECRET_TOKEN, %r15

 // DoS attacks is also not allowed

 jne abort

 jne handle_abuse

1

2

3
4

5

6

7

+

+
+
+

8

9

10

11

12

+

13+
-

-

1

2

3
4

5

6

7
8

9
10

11
12

+

-
-
-

(a) (b) (c)

Figure 4: (a) A basic IPC gate for switching execution domains: Line 1-7 is from the caller to the callee and Line 9-15 is just a reverse process.
(b) A security-enhanced IPC gate (from the caller to the callee only) that solves the arbitrary IPC problem. (c) An optimized IPC gate based
on the secure one.

works similarly. The mappings of a system server in the ker-
nel page table (used when running in the kernel) will not be
removed, and the system server’s page table (used when run-
ning in user) always exists. And the core kernel will keep
corresponding mappings in the two page tables the same.

With server migration, UnderBridge can run frequently-
used servers (according to either online or offline profiling)
in kernel space while accommodating other servers in user
processes. Besides that, we think the number of frequently-
used servers may usually be small according to a preliminary
survey on some popular applications including Memcached,
MySQL, GCC, and a ROS-based (robot) application. We run
those applications on Linux and find the most required sys-
tem calls are only related to the File System, Network, Syn-
chronization, and Memory-Management. For a microkernel,
these system calls are usually implemented in only several
system servers or directly in the core kernel, which indicates
the server migration may rarely happen.

4 Enforcing Isolation in UnderBridge

Threat Model and Assumptions. UnderBridge aims to
achieve the same security guarantee as existing microkernels
and inherits the same trust model. Specifically, the (trusted)
core kernel is assumed to be bug-free and correctly imple-
mented because it has relatively small codebase (e.g., 8,500
LoC in our implementation) and is amenable to formal ver-
ification [44]. We do not trust applications or the operating
system servers, which may have vulnerabilities or even be
maliciously crafted and can be fully compromised by attack-
ers. Physical attacks and hardware bugs are out of the scope
of this paper.
Two Security Challenges. Although UnderBridge achieves
memory isolation by utilizing MPK hardware, there are still
two security threats.

The first threat is the arbitrary IPC problem. The core
kernel generates IPC gates in memory domain 0 to ensure
any server cannot modify the gates. However, an IPC gate
can still be invoked by any (in-kernel) system server as the
MPK does not enforce permission check on execution per-

mission. Although recent work on MPK-based intra-process
isolation [39, 77] does not consider such gate abusing prob-
lem, we cannot neglect it because it violates the enforce-
ment of the IPC capability in microkernels. Therefore, Un-
derBridge ensures only a legal caller (allowed by the core
kernel) can successfully use an IPC gate by adding manda-
tory authentications in the gate. § 4.1 explains the secure de-
sign of IPC gates.

The second threat is that untrusted in-kernel system
servers run in supervisor mode (Ring-0). Thus, a compro-
mised server can execute any privileged instructions theo-
retically, which threatens the whole system. For example, it
could install a new page table and freely access all memory.
One possible defense solution is to enforce control-flow in-
tegrity (CFI), which ensures that servers cannot execute any
illegal control flow leading to executing privileged instruc-
tions. However, CFI instrumentations inevitably bring obvi-
ous runtime overhead. Instead, we choose hardware virtual-
ization technology and run ChCore in non-root mode. A tiny
secure monitor in root mode audits the execution of most
privileged instructions, as summarized in Table 2, by simply
trapping them through VMExits. In the meanwhile, we use
the binary rewriting technique to avoid the expensive VMEx-

its on the critical paths. § 4.2 gives more details.

4.1 Unauthorized IPCs Prevention

As shown in Figure-4(a), the responsibility of an IPC gate
is saving/restoring the (necessary) execution context of the
caller/callee and switching the execution domain from the
caller to the callee. Line 2-4 prepares the argument registers
for wrpkru, which requires eax to store the target permission,
and both ecx and edx to be zero. The wrpkru instruction
in Line 5 sets PKRU_CALLEE (the callee’s permission) to
the PKRU register, which specifies the memory-access per-
mission, so the execution domain changes to the callee’s
domain after this instruction finishes. Line 6-7 prevents a
compromised thread from directly jumping (e.g., ROP) to
Line 5 with some carefully chosen value in eax. Existing
work [39, 77] on MPK also designs similar gates for intra-

406 2020 USENIX Annual Technical Conference USENIX Association

process isolation.
However, such a design faces the gate abusing problem.

Since MPK has no restriction on execution permission, a do-
main can use the gates belonging to other domains to issue
IPCs. UnderBridge solves this problem by authenticating the
caller’s identity in the IPC gates. As the core kernel is re-
sponsible for generating IPC gates when two execution do-
mains establish the IPC connection, it knows which domain
is the legal caller of the gate. Besides, since each domain
has unique memory-access permission, UnderBridge regards
the permission as the domain’s identity and checks the iden-
tity with rdpkru in Line 5-7 of Figure-4(b). Moreover, Un-
derBridge must ensure that the identity check cannot be by-
passed. Otherwise, a compromised thread can jump to Line
8/9 without going through the check. To this end, each gate
adds two cheap instructions (Line 2 and Line 11 in Figure-
4(b)) to guarantee that a successful IPC invocation must go
through the check. When setting up an IPC gate, the core ker-
nel randomly produces a 64-bit secret token with rdrand in-
struction and inserts it to the gate. Note that any server cannot
read the token value since the IPC gates belong to domain 0
(core kernel). Thus, any caller who wants to pass the check at
Line 11 must execute Line 2 first, which ensures the identity
check at Line 5-7 is non-bypassable for successful invoca-
tions. Similarly, Line 8 is also non-bypassable for successful
IPCs; thus, Line 10 is no more required.

Figure-4(c) further gives a more efficient design, which
eliminates the overhead of identity check. Although rdpkru

only takes about 9 cycles, it as well as the extra comparison
(Line 6-7) are still on the critical path of IPC. To remove the
overhead, UnderBridge authenticates IPC callers by reusing

the stack-pointer saving instruction (Line 8), which is ini-
tially located in the procedure of state saving (Line 1). In
this way, any illegal caller will trigger a fault when accessing
ADDR_IN_CALLER (Line 8) and get caught.

4.2 Privilege Deprivation

In traditional microkernels, system servers only have Ring-3
privilege. To achieve the same security/isolation guarantee,
UnderBridge should restrict the servers’ behavior when run-
ning them in execution domains (Ring-0). However, a com-
promised server may find and execute privileged instructions
at unaligned instruction boundaries with ROP to attack the
whole system. Based on an in-depth analysis of privileged
instructions (briefly summarized in Table-2), UnderBridge
combines virtualization hardware support, binary rewriting
technique, and some specific solutions to de-privilege the ex-
ecution domains for servers with negligible overhead.

According to our survey on four microkernels, system reg-
isters such as IDTR are only configured at boot time; de-
bug/profile registers are only accessed at debugging/profil-
ing time; most model-specific registers (MSRs) are also not
accessed in the critical paths. Thus, UnderBridge runs the
microkernel in non-root mode and configures the privileged

instructions operating on those registers to trigger VMExits.
And, the secure monitor in root mode checks whether they
are executed by the core kernel according to the memory-
access permission in PKRU. Nevertheless, rdmsr/wrmsr may
also be used to operate FS/GS in the critical path. Under-
Bridge can configure these two specific registers not to trap
or replace them with some newer non-privileged instructions
(e.g., wrfsbase).

Similarly, since control registers CR0 and CR4 are set at
boot time only, UnderBridge also traps the setting instruc-
tions. Nevertheless, accessing CR2 and reading CR0/CR4

cannot trigger VMExits. UnderBridge clears CR2, where
CPU saves the page fault address in the fault handler to
prevent information leakage, and hides the real CR0/CR4

value with a shadow value by leveraging virtualization hard-
ware functionality. As for CR3, it points to page tables and
needs modifications when switching address spaces, which
frequently appears in the critical path. So, triggering VMEx-

its on CR3 modifications is expensive. Instead, we use the fol-
lowing lightweight solution (a special method). When load-
ing system servers, UnderBridge leverages binary scanning
and rewriting to guarantee the servers contain no CR3 modifi-
cation instructions, including at unaligned instruction bound-
aries. While in the core kernel, this privileged instruction
must exist to switch address spaces. UnderBridge prevents
a compromised system server from executing this instruc-
tion in the core kernel through defenses in depth. First (a
simple defense), the instruction location is unknown to the
servers. Second, to achieve higher security, the core kernel
can write this instruction right before executing it and imme-
diately remove it after the execution. Thus, a system server
cannot execute it even if knowing its location. Furthermore,
on different cores, UnderBridge makes the page table map-
ping for this instruction (page) different. So, when one core
writes this instruction, other cores still cannot execute it.

Instructions that invalidate cache/TLB may be used by
compromised servers for conducting performance attacks.
While trapping cache invalidation instructions via VMEx-

its does not affect overall performance since they are rarely
executed, flushing TLB frequently appears on the critical
path. So, we use binary rewriting to ensure there are no
TLB flush instructions in system servers instead of trapping
these instructions. The core kernel must contain these instruc-
tions, but they cannot be abused by faulting servers because
we make sure they are followed by instructions that access
the core kernel memory. Cacheline flush instructions (non-
privileged instructions, e.g., clflush and clflushopt) are also
considered because the system servers share the same ad-
dress space with the core kernel. Nevertheless, these instruc-
tions obey MPK memory (read) checks and thus, cannot be
utilized by a server to flush others’ memory areas.

For other privileged instructions and I/O related opera-
tions, we take similar solutions as listed in Table-2. One thing
to notice is that a compromised server may disable interrupts

USENIX Association 2020 USENIX Annual Technical Conference 407

Categories
Related Instructions

or Registers
Usages in Zircon/Fiasco.OC/seL4/ChCore or Brief Explanations Solutions

Load/Store
System Registers

IDTR, GDTR, LDTR
TR, XCR0 ...

Although seL4 uses "LTR" instruction when switching processes,
it can be removed by setting different TSSs at boot time as do in other microkernels.
Others are required at boot time only.

VMExit

Debug/Profile
Registers

Debug registers
RDPMC

Required for debugging and profiling, which are not performance-oriented. VMExit

Model Specific
Registers

RDMSR/WRMSR
Usually, they are mostly used at boot time or debug time and
can trigger VMExits for selected registers according to configuration bitmaps.

Selected VMExit

Read/Write
Control Registers

mov CRn, reg
mov reg, CRn
CLTS (modify CR0)

- In the four microkernels, CR0/CR4 is written at boot time only and CR8 is not used.
- No VMExits: accessing CR2, reading CR0 and CR4.
- CR3 is used for switching address space. So, we handle it with a special method.

- VMExit
- Clear/hide
- Special method

Cache/TLB
States

- INVD/WBINVD
- INVLPG/INVPCID
- clflush instructions

- Whole cache eviction. WBINVD is rarely used, and INVD is even not used.
- TLB clear is needed after updating page tables. So, triggering VMExits is costly here.
- (executable in Ring-3) Evicting a single cache line. MPK checks take effects.

- VMExit
- Binary rewritng
- None

I/O Related
Operations

- Port I/O
- MMIO
- DMA

- Port I/O is not performance-oriented and can trigger VMExits with I/O bitmaps.
- MMIO operations go through MPK checks.
- The core kernel initializes DMA devices at boot time and takes the control plane.

- VMExit
- None
- None

Other Privilege
Instructions

- SMSW, RSM, HLT ...
- SWAPGS, SYSRET...
- CLI, POPFQ...

- Either related to other modes like legacy and SMM mode or rarely used.
- Cannot break the system states, otherwise leading to the execution of fault handlers.
- Can be used by compromised servers to disable interrupts.

- VMExit
- None
- Check in VMM

PKRU Register
(Ring-0/3)

- xsave set instructions
- WRPKRU

- For restoring extended processor states, which may include PKRU state.
- For changing the value of PRKU register as used in IPC gates.

- No restoring
- Binary rewriting

Table 2: Deprive the execution domains for system servers of the ability to execute privileged instructions.

through instructions like cli to monopolize the CPU. Fortu-
nately, it cannot disable the host timer interrupts, which un-
conditionally trigger VMExits. Thus, the secure monitor can
easily detect such malicious behaviors by checking PKRU

and interrupt state.
Last but not least, we must forbid system servers from

changing the PKRU register, i.e., changing the memory-
access permission, by themselves. There are two kinds
of instructions that can modify PKRU. For the first kind
(xrstor/xrstors), the core kernel configures them not to man-
age PKRU by setting a control bit (bit-9) in XRC0. For the
second kind (wrpkru), the core kernel ensures it does not ex-
ist outside the IPC gates by rewriting the binary code (simi-
lar to [77]). The wrpkru in the IPC gates cannot be abused as
specified in § 4.1.

We omit the detailed policies of the binary rewriting in
this paper as it is a mature technique [17, 25, 77]. Neverthe-
less, it is worth noting that using binary rewriting to directly
eliminating all privilege instructions is undecidable because
some privilege instructions only take one byte (e.g., hlt). Our
hybrid approach is both effective and efficient.

4.3 Security Analysis

By introducing in-kernel servers, our system has one major
difference from existing microkernels, which may lead to a
larger attack surface. The in-kernel servers run in the ker-
nel mode, which means a compromised server is able to ex-
ecute any privileged instruction. We will analyze the attacks
caused by the difference and illustrate how to defend against
them.
Restricting privileged in-kernel servers: System servers
are not trusted in our threat model. Although they can run
in the kernel mode, they are highly restricted when trying to

attack the core kernel, other servers, or the applications.

We assume that an attacker has fully compromised an in-
kernel server and can execute arbitrary instructions. Since
the server runs in another execution domain (no access to
the memory domain 0), it cannot directly access the memory
of the core kernel. As long as it tries to read or write any
disallowed memory, a CPU exception will immediately be
triggered and handled by the core kernel.

There are four ways to bypass the memory isolation mech-
anism enforced by MPK: the first one is to run the disabling
instructions, e.g., by setting CR4.PKE to 0 or setting CR0.WP

to 0; the second is to change the PKRU register to gain access
permission of other memory domains illegally; the third is to
change the page table base address by setting the CR3 regis-
ter; the fourth is to modify the page table directly.

ChCore can defend against all these attacks. Before load-
ing a server, ChCore uses binary scanning/rewriting to elimi-
nate the undesired privileged instructions. At runtime, the se-
cure monitor will prevent a server from executing other privi-
leged instructions. Compared with running on traditional mi-
crokernels, servers, including maliciously crafted ones, have
no more attack means on microkernels with UnderBridge.
First, when the malicious server executes the disabling in-
structions, it will trigger VMExits, and the monitor will lo-
cate the compromised server. Second, as described in the last
paragraph of § 4.2, the two ways of modifying the PKRU reg-
ister are prevented. Third, the malicious server has no way to
modify CR3 since the binary rewriting guarantees no CR3

modification instructions exist in any server’s address space.
Fourth, the malicious server cannot modify the page table
because the kernel page table resides in memory domain 0.
Meanwhile, it cannot modify or add instructions which re-
quire to change the page table first. The isolation between

408 2020 USENIX Annual Technical Conference USENIX Association

in-kernel servers is the same as the isolation between an in-
kernel server and the core kernel. Since an in-kernel server
does not share address space with user applications, it can-
not access applications’ memory either.
Defending side-channel attacks: Since all the in-kernel
servers share one address space, it is easier for a malicious
one to issue Spectre [45] and Meltdown [54] attacks com-
pared with the case where all servers have their own address
spaces. Although these attacks are caused by CPU bugs (out-
of-scope), ChCore can mitigate them with existing software
defenses like using address randomization makes a compro-
mised server hard to locate the sensitive memory area. Con-
sidering the secret tokens leakage on buggy CPUs, extra
checks can be added in the IPC gates, e.g., Line-10 in Figure-
4(b), to prevent malicious PKRU modification and ensure the
memory isolation. Besides that, most known hardware vul-
nerabilities have been fixed by major CPU vendors in their
latest products [5, 6], which is orthogonal to ChCore.

5 Implementation

Based on our UnderBridge design, we have implemented a
prototype microkernel ChCore, which contains about 8500
lines of C code (LOC). ChCore runs in guest-mode, i.e.,
non-root mode on x86_64, and a small secure monitor
(around 300 LOC) runs in hypervisor-mode, i.e., root mode
on x86_64. We have implemented the tiny secure monitor
in a minimal virtualization-layer, RootKernel (1,500 LOC)
of SkyBridge [62]. Note that RootKernel is not a hypervisor
and works only for running one OS in the guest-mode and
thus avoids most overhead caused by virtualization. There-
fore, although our system requires hardware virtualization,
it still can be deployed in bare-metal machines with RootK-
ernel and achieve close-to-native performance. Considering
the above, our system increases the trusted computing base
(TCB) by 1,800 LOC in total when running on bare-metal
machines, which is acceptable. Besides, we also integrate
the tiny secure monitor in a commercial hypervisor, KVM,
which makes deploying our system in cloud feasible. Even if
nested virtualization is required, our secure monitor can still
work because it simply utilizes the hardware-provided capa-
bility to trap sensitive instructions. Because the instructions
to trap are deliberately selected and do not exist on critical
paths, they will not degrade the overall performance. Never-
theless, our current implementation requires cloud providers
to patch their hypervisors. In such a case, our system in-
creases TCB by 300 LOC. Alternatively, we may leverage
eBPF [61, 81] to deploy our secure monitor without modifi-
cations to the commercial hypervisor (left as future work).

We also apply UnderBridge to three state-of-the-art mi-
crokernels, i.e., seL4 3, Zircon, and Fiasco.OC, to demon-
strate the generality of the design. The porting effort is about
1000∼1500 LOC for each of them. Since UnderBridge uses
different page tables for applications and kernel, it also en-

3We do not retain formal correctness guarantees of seL4.

ables and leverages the PCID hardware feature for avoiding
unnecessary TLB flushing. As native Fiasco.OC does not
support to use this feature, we also add a simple extension
to assign different PCIDs to an application and the kernel.

6 Performance Evaluation

Basic Setup. We conduct all the experiments on a Dell Pow-
erEdge R640 server, which is equipped with a 20-core Intel
Xeon Gold 6138 2.0GHz CPU and 128GB memory. Both
Turbo Boost and Hyper-threading are disabled. ChCore runs
on Linux/KVM-4.19 and QEMU-4.1.
Systems for Comparison. We evaluate the native IPC per-
formance of three popular microkernels (Zircon, seL4, and
Fiasco.OC) on bare metal. Also, we evaluate SkyBridge [62],
which is the state-of-the-art optimization for IPC in micro-
kernels by using vmfunc. SkyBridge deploys a small hyper-
visor called RootKernel and runs microkernels in non-root
mode. When evaluating UnderBridge, we deploy the secure
monitor of UnderBridge in RootKernel and run microker-
nels with UnderBridge on it. As Zircon has no kernel-page-
table-isolation (KPTI) support, we simulate the overhead of
page table switching by writing CR3 twice when evaluating
UnderBridge on it, this is because UnderBridge requires to
make the kernel and applications use different page tables.

6.1 IPC Performance Analysis

Cross-server IPC. Firstly, we analyze the IPC performance
between two servers (we abbreviate “system server” as
“server” in this section) in a micro-benchmark, which uses
rdtsc instruction to measure the round-trip latency of invok-
ing an empty function in server B from server A.

 7500

 8000

 8500
8151

C
y
c
le

s

 0

 1000

 2000

 3000

 4000

 5000

Monolithic

ChCore
(UnderBridge)

SkyBridge

seL4
seL4-KPTI

Fiasco.OC

Fiasco.OC

-KPTI

Zircon

24 109
437

1450
2035

3057

4145

C
y
c
le

s

Figure 5: Round-trip latency of cross-server IPC.

Figure-5 gives the absolute cost of cross-server IPCs in
different designs. Since invocations between servers (com-
ponents) in monolithic kernels are usually achieved by using
(indirect) call/ret instructions, the round-trip latency is only
24 cycles. The latency of an IPC round-trip in ChCore is
109 cycles, which is dominated by two wrpkru instructions
(56 cycles in total). Note that the IPC is achieved by Under-
Bridge and thus only involves the lightweight wrpkru and
the procedure of saving necessary registers. SkyBridge re-
quires two much heavier vmfunc instruction (292 cycles in
total) and therefore has larger latency.

The round-trip latency of a native IPC in the other three
microkernels are much more noticeable. Among them, seL4

USENIX Association 2020 USENIX Annual Technical Conference 409

shows the best performance as it will directly switch the
caller thread to callee thread when executing fast-path IPCs.
Although Fiasco.OC applies a similar strategy, it has a more
complex IPC capability handling procedure. Zircon does not
support direct-switch and thus has the worst performance due
to the high scheduling cost.

Compared with the native IPC in the three microkernels,
our UnderBridge design is more than 12.3× faster. The per-
formance improvement mainly comes from two parts. First,
UnderBridge avoids the time-consuming privilege switches
in traditional IPC designs, as measured in § 2.2. Second, Un-
derBridge avoids the complex validation and invocation of
the IPC capability on the critical path. An IPC gate is only
generated after the corresponding capabilities having been
checked, so UnderBridge needs not to check the capability
at runtime. Also, the gate only requires several lightweight
instructions for the domain switching (details in § 4.1).

Another benefit of UnderBridge is that the in-kernel
servers can invoke system calls faster via the IPC gates in-
stead of using syscall instructions.
Application-to-Server IPC. We further analyze the IPC
(round-trip) performance between a user application and a
server in this part. Commonly, a system call involves mul-
tiple servers in microkernels (or multiple kernel components
in monolithic kernels), which means an application-to-server
IPC may involve several cross-server IPCs. To simulate such
cases, we design a micro-benchmark that includes one appli-
cation and several servers. Each server will do nothing but
routing IPCs to another server. We vary the number of cross-
server IPCs in the benchmark.

Approaches
Cross-server IPCs

0 1 2

SkyBridge 437 931 1390

ChCore (UnderBridge) 723 856 981

seL4 1450 2932 4266

Table 3: Round-trip latency (cycles) of one application-to-server
IPC and different number of cross-server IPCs.

Table-3 compares the performance of SkyBridge (applied
on Fiasco.OC) and UnderBridge (applied on ChCore) in this
micro-benchmark. Results are similar when we apply them
to other microkernels and thus omitted. If an application in-
vokes a server without causing any cross-server IPCs, Sky-
Bridge (437 cycles) shows better performance than Under-
Bridge (723 cycles). It is because UnderBridge has to switch
the privilege level and the address space for transferring the
control flow from user space to kernel space, while Sky-
Bridge applies more lightweight EPT switching via vmfunc.
Nevertheless, UnderBridge still outperforms the best native
IPC (1450 cycles in seL4), because of reducing one privilege
switch and minimizing the software logic of an IPC.

As the number of cross-server IPCs increases, the latency
of SkyBridge increases in proportion. It is because that IPC
from application to the server and between servers are sym-

metric and cost the same cycles. In contrast, the latency of
UnderBridge grows much slower because its cross-server
IPC is much more lightweight. As shown in Table-3, the
performance of UnderBridge becomes better than SkyBridge
when involving one cross-server IPC, and is better than that
by 42% when involving two. The performance speedup is
expected to grow along with the increasing number of the
cross-server IPCs and finally close to 3.0× as in Figure-5.

6.2 Application Benchmarks

We further evaluate the performance of UnderBridge with
two real-world applications: a database application and
an HTTP server application. In the following experiments,
shared memory is used to transfer data during IPCs.
Database Evaluation. To faithfully compare with Sky-
Bridge, we use the benchmarks in [62]. Specifically, for serv-
ing a relational database, SQLite3 [15], we run two system
servers: one is a file system named xv6fs [16, 23], and the
other is a RAMdisk (memory-only). When SQLite3 oper-
ates on a file, it will first invoke the xv6fs server by an
application-to-server IPC, and then the xv6fs will read or
write the RAMdisk by cross-server IPCs.
Basic Operations. We first evaluate the performance of basic
operations, including insert, update, query, and delete opera-
tions. Our evaluation includes three IPC approaches: the na-
tive IPC, UnderBridge, and SkyBridge. Specifically, for each
microkernel, we not only evaluate the performance with its
native IPC designs but also test the performance after apply-
ing UnderBridge and SkyBridge to it. We also emulate the
performance of a monolithic kernel by replacing all the IPC
gates in UnderBridge with function calls.

Figure-6(a), 6(b) and 6(c) show the normalized throughput
of basic operations in the three microkernels, separately. The
baseline is set as the performance of native IPC design in
each microkernel.

UnderBridge achieves up to 13.1×, 9.0×, 1.6× and 11.3×
speedup for each of these operations, individually. The im-
provement of query operations is relatively small since
SQLite3 has an internal buffer for storing recent data and
may handle the queries without issuing IPCs. Compared with
SkyBridge, the performance improvement of UnderBridge
(up to 65%) is because a single IPC from SQLite3 to xv6fs
is likely to trigger multiple cross-server IPCs between xv6fs
and RAMdisk. Even compared with the emulated perfor-
mance of monolithic kernels, UnderBridge only introduces
about 5.0% overhead.

The above-tested xv6fs (exactly the same one used in
the SkyBridge paper [62]) contains no page cache, which,
thus, emulates an IPC-intensive scenario. We further en-
able the page cache in xv6fs to show how UnderBridge
performs with fewer cross-server IPCs between xv6fs and
RAMdisk. As shown in Figure-6(d), 6(e) and 6(f), the per-
formance improvement of UnderBridge is still obvious. Un-
derBridge shows up to 4.0×, 2.9×, 0.7× and 3.2× speedup

410 2020 USENIX Annual Technical Conference USENIX Association

 0

 5

 10

 15

 20

insert update query delete

T
h
ro

u
g
h
p
u
t

Native w/o KPTI
Zircon-SkyBridge

Zircon-UnderBridge

Monolithic
Monolithic w/o KPTI

(a) Zircon (xv6fs w/o page cache).

 0

 1

 2

 3

 4

 5

insert update query delete

T
h
ro

u
g
h
p
u
t

Native w/ KPTI
Native w/o KPTI
seL4-SkyBridge

seL4-UnderBridge
Monolithic

Monolithic w/o KPTI

(b) seL4 (xv6fs w/o page cache).

 0

 2

 4

 6

 8

 10

 12

insert update query delete

T
h
ro

u
g
h
p
u
t

Native w/ KPTI
Native w/o KPTI

Fiasco.OC-SkyBridge

Fiasco.OC-UnderBridge
Monolithic

Monolithic w/o KPTI

(c) Fiasco.OC (xv6fs w/o page cache).

 0

 1

 2

 3

 4

 5

 6

insert update query delete

T
h
ro

u
g
h
p
u
t

(d) Zircon (xv6fs w/ page cache).

 0

 1

 2

insert update query delete

T
h
ro

u
g
h
p
u
t

(e) seL4 (xv6fs w/ page cache).

 0

 1

 2

 3

 4

insert update query delete

T
h
ro

u
g
h
p
u
t

(f) Fiasco.OC (xv6fs w/ page cache).

Figure 6: Normalized throughput of basic SQLite3 operations.

compared with the native IPC and achieves comparable per-
formance with monolithic kernels. Nevertheless, since fewer
cross-server IPCs are involved, the maximum improvement
of UnderBridge compared with SkyBridge drops from 65%
to 25%.

Since UnderBridge runs in non-root mode, we also count
the number of VMExit, which is known as the cost of virtual-
ization. Thanks to the careful design of RootKernel and our
secure monitor, there are almost zero VMExits during the ex-
periments. For example, at most one VMExit (due to timer)
happens during the query test.

YCSB Benchmark. We also evaluate SQLite3 against YCSB
workloads. Figure-7(a) and 7(b) show the normalized
throughput of YCSB-A (50% update and 50% query) with
the page cache disabled and enabled in xv6fs, separately. We
use the same baseline as the basic operation evaluation. Even
for seL4, which is the most efficient among the three micro-
kernels, UnderBridge improves the application’s throughput
from 35% to 105%. UnderBridge also brings a better perfor-
mance (from 7% to 35%) than SkyBridge. Besides, it is only
slightly slower (3.3% on average) than the monolithic kernel.
Other YCSB workloads give similar results.

Furthermore, Figure-7(c) gives a detailed analysis of the
experiments with page cache enabled in xv6fs. First, the ratio
of IPCs from SQLite3 to xv6fs (application-to-server) and
xv6fs to RAMdisk (cross-server) is about 1:2. Thus, Under-
Bridge outperforms SkyBridge, according to Table-3. Sec-
ond, it helps to reduce the ratio of time spent on IPCs to
around 11% while the other three microkernels spend at least
30% of the time on IPCs. Third, it makes the application and
the servers execute faster (about 10%) owing to less indirect
costs such as cache/TLB pollution.

Server Migration. We also evaluate the performance of
server migration, although it should rarely happen. We still
run SQLite3, xv6fs, and RAMdisk as above on Zircon and
trigger the server migration. Taking RAMdisk (128 MB vir-
tual memory range) as an example, migrating it from kernel
to user takes about 84,361 cycles. Most of the cycles (83,517)

are spent on modifying the kernel page table to free the do-
main ID (i.e., the third step for migrating a server specified in
§ 3.3). Migrating RAMdisk from user to kernel takes more
cycles (90,189) mainly because more cycles are spent on
waiting for finishes of on-going IPCs.
HTTP Server Evaluation. For running an HTTP server (a
user-space application), we create three system servers: a
socket server, a TCP/IP protocol stack server, and a loop-
back network device driver (not involving the real network
device) atop lwIP [31] library. We measure the throughput of
a simple HTTP server from the client-side, which receives re-
quests from the network and sends back a static HTML page.

We perform this evaluation on Zircon. As shown in Figure-
7(d), UnderBridge improves the throughput of the HTTP
server by 4.4×. We also implement the same benchmark with
SkyBridge. UnderBridge outperforms SkyBridge by about
24% because a network request also triggers multiple cross-
server IPCs.

7 Related Work

Reconstructing monolithic kernels. The development of
monolithic kernels follows the philosophy of modularization,
but all the kernel components are not isolated from each
other. With reliability and security attracting a fair amount
of attention, we witness interest in reconstructing monolithic
kernels to achieve better fault isolation and higher secu-
rity [17, 25, 26, 38, 41, 59, 63, 65, 67, 74, 75, 84, 86]. Daut-
enhahn et al. [25] build one memory protection domain in-
side the BSD kernel and run a small trusted kernel in that
domain to control memory mappings. Mondrix [84] imple-
ments a compartmentalized Linux kernel with eleven iso-
lated modules based on customized security hardware [83].
Proskurin et al. [65] propose to use Intel EPT and vmfunc to
isolate critical kernel data in different domains. Nooks [74]
and LXFI [59] focus on improving the reliability of Linux by
isolating kernel modules, especially device drivers.

Our work does share some similarities with prior work
on intra-(monolithic)kernel isolation. Nevertheless, we fo-

USENIX Association 2020 USENIX Annual Technical Conference 411

 0

 2

 4

 6

 8

 10

Zircon Fiasco.OC seL4

T
h
ro

u
g
h
p
u
t

Native w/ KPTI
Native w/o KPTI

SkyBridge

UnderBridge
Monolithic

Monolithic w/o KPTI

(a) YCSB-A (xv6fs w/o page cache).

 0

 1

 2

 3

 4

Zircon Fiasco.OC seL4

T
h
ro

u
g
h
p
u
t

(b) YCSB-A (xv6fs w/ page cache).

20%

40%

60%

80%

100%

UnderBridge
Zircon Fiasco seL4

SQLite3-xv6fs IPC
xv6fs-RAMdisk IPC

Real Work

(c) Breakdown analysis.

 0

 1

 2

 3

 4

 5

 6

 7

T
h

ro
u

g
h

p
u

t

Zircon

(d) HTTP server.

Figure 7: (a), (b), and (d) share the same legend. (a) and (b) show the normalized throughput of YCSB-A with xv6fs’s page cache disabled
and enabled separately. (c) shows the time breakdown of YCSB-A benchmark. (d) demonstrates the normalized throughput of a HTTP server.

cus on accelerating IPCs for microkernel architectures while
maintaining strong isolation (both ends). We need to do lit-
tle modification/instrumentation on system servers of a mi-
crokernel. This is because system servers of a microkernel
are designed to run in different user processes, and all the
interactions are explicit IPCs, which is different from the
subsystems in Linux (no clear boundaries and have com-
plex shared memory references). We achieve intra-kernel iso-
lation by retrofitting Intel MPK, which is lightweight and
commercially-available, to build multiple execution domains
in kernel space. Furthermore, UnderBridge may also be gen-
eralized to other kernel scopes with more efforts in the fu-
ture. On one side, the proposed abstraction of the execution
domain can be extended to accommodate different kernel
modules in monolithic kernels, and the IPC gates can still
be used to handle interactions between those modules. On
the other side, our design can also be applied in kernels writ-
ten in memory-safe languages [11, 24] to isolate some unsafe
code (e.g., the code with “unsafe” tag in Rust).

Accelerating IPCs. Optimizing the performance of IPC in
microkernels is continuously studied for a long time [19,
36, 44, 50, 52, 82]. For example, LRPC [19] eliminates
the scheduling overhead during an IPC by using the thread-
migration model [36, 37]; seL4 [44] provides the fast-path
IPC, which also avoids scheduling and passes arguments
through registers. Nevertheless, even with these software-
based optimizations, IPC-intensive applications on microker-
nels still suffer from the IPC overhead.

Recent studies present new designs to accelerate IPCs with
advanced hardware features. SkyBridge [62] utilizes the vm-

func to allow a process to invoke a function in another pro-
cess directly without the kernel’s involvement. XPC [30] is
a hardware proposal that accelerates IPCs by implementing
efficient context switch and memory granting. dIPC relies
on another hardware proposal [78] to put processes into the
same address space and thus make IPCs faster. Our design
shows better performance than SkyBridge and requires no
hardware modification.

Usage of Intel MPK. Intel MPK/PKU has been utilized
by [39, 64, 77] to achieve efficient intra-process isolation,
which can build mutual-distrusted execution environments
in a single user process. There are two main differences be-
tween UnderBridge and them. First, UnderBridge retrofits

MPK that designed for user space in kernel space to improve
the IPC performance for microkernels (the first effort to our
knowledge) and also faces more security challenges. Appli-
cations can still utilize MPK in user space as they want since
they have different page tables from the kernel. Second, Un-
derBridge authenticates the caller of each MPK gate for en-
forcing IPC capability to prevent illegal domain switches,
while prior work allows arbitrary domain switches.

There exist two concurrent studies [38, 73] to Under-
Bridge. They also propose to utilize MPK in kernel mode
but with different goals and designs. IskiOS [38] leverages
MPK to defend against code-reuse attacks (e.g., protecting
shadow stacks) in the kernel. Sung et al. [73] uses MPK to
enhance the isolation for a unikernel while does not solve the
security challenges identified in UnderBridge.
MPK-like features on other architectures. Tagged mem-
ory [28, 43, 85], which can provide MPK-like features, is
added in other architectures, which brings the potential to
make UnderBridge more general to those architectures. Re-
cently, the RISC-V security community also considers en-
hancing the PMP (physical memory protection) isolation
with the tagged memory mechanism [12]. However, Under-
Bridge cannot work on current ARMv8 (aarch64). Yet, ARM
v8.5 has included memory tagging extensions [10], by ex-
tending which with more mechanisms, we may provide a
similar mechanism workable on future ARM platforms.

8 Conclusion

This paper introduces UnderBridge, a redesign of the run-
time structure of microkernel OSes for faster OS services. To
demonstrate UnderBridge’s efficiency, we have built a proto-
type microkernel named ChCore and ported it to three exist-
ing microkernels. Performance evaluations showed that Un-
derBridge can achieve better performance in IPC-intensive
workloads compared with prior work.

9 Acknowledgement

We sincerely thank our shepherd Antonio Barbalace and the
anonymous reviewers for their insightful suggestions. This
work is supported in part by China National Natural Science
Foundation (No. 61925206, 61972244, and U19A2060) and
a grant from the Science and Technology Commission of
Shanghai Municipality (No. 19511121100). Yubin Xia is the
corresponding author.

412 2020 USENIX Annual Technical Conference USENIX Association

References

[1] Apple ios security-ios 12.1. https://www.apple.

com/business/site/docs/iOS_Security_Guide.

pdf. Referenced December 2019.
[2] Fiasco.oc repository. https://l4re.org/download/

snapshots/. Referenced December 2019.
[3] Fuchsia. https://fuchsia.dev/fuchsia-src. Ref-

erenced December 2019.
[4] Fuchsia repository. https://fuchsia.dev/

fuchsia-src/development/source_code. Ref-
erenced December 2019.

[5] Ian cutress: Analyzing core i9-9900k performance
with spectre and meltdown hardware mitigations.
https://www.anandtech.com/show/13659/analyzing-
core-i9-9900k-performance-with-spectre-and-
meltdown-hardware-mitigations. Referenced De-
cember 2019.

[6] Intel corporation. engineering new protections into
hardware. https://www.intel.com/content/

www/us/en/architecture-and-technology/

engineering-new-protections-into-hardware.

html. Referenced December 2019.
[7] Intel software developer’s manual. https://

software.intel.com/sites/default/files/

managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.

pdf. Referenced December 2019.
[8] Kernel page table isolation. https://en.wikipedia.

org/wiki/Kernel_page-table_isolation. Refer-
enced December 2019.

[9] Linux kernel cves. https://www.cvedetails.com/

product/47/Linux-Linux-Kernel.html?vendor_

id=33. Referenced December 2019.
[10] Memory tagging in armv8.5-a. https://

community.arm.com/developer/ip-products/

processors/b/processors-ip-blog/posts/

arm-a-profile-architecture-2018-developments-armv85a.
Referenced May 2020.

[11] Redox operating system. https://www.redox-os.

org/. Referenced December 2019.
[12] Risc-v isa specification. https://riscv.org/

specifications/. Referenced May 2020.
[13] sel4 performance report. http://sel4.systems/

About/Performance/. Referenced December 2019.
[14] sel4 repository. https://github.com/seL4/seL4.

Referenced December 2019.
[15] Sqlite. https://www.sqlite.org/index.html. Ref-

erenced December 2019.
[16] xv6 repository. https://github.com/mit-pdos/

fscq/tree/master/xv6. Referenced December 2019.
[17] Ahmed M Azab, Peng Ning, Jitesh Shah, Quan Chen,

Rohan Bhutkar, Guruprasad Ganesh, Jia Ma, and
Wenbo Shen. Hypervision across worlds: Real-time

kernel protection from the arm trustzone secure world.
In Proceedings of the 2014 ACM SIGSAC Conference

on Computer and Communications Security, pages 90–
102. ACM, 2014.

[18] Andrew Baumann, Paul Barham, Pierre-Evariste Da-
gand, Tim Harris, Rebecca Isaacs, Simon Peter, Timo-
thy Roscoe, Adrian Schüpbach, and Akhilesh Singha-
nia. The multikernel: A new os architecture for scal-
able multicore systems. In Proceedings of the ACM

SIGOPS 22Nd Symposium on Operating Systems Prin-

ciples, SOSP ’09, pages 29–44, New York, NY, USA,
2009. ACM.

[19] Brian N. Bershad, Thomas E. Anderson, Edward D. La-
zowska, and Henry M. Levy. Lightweight remote pro-
cedure call. ACM Trans. Comput. Syst., 8(1):37–55,
February 1990.

[20] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel
Gruss, Moritz Lipp, Marina Minkin, Daniel Moghimi,
Frank Piessens, Michael Schwarz, Berk Sunar,
Jo Van Bulck, and Yuval Yarom. Fallout: Leaking
data on meltdown-resistant cpus. In Proceedings of

the 2019 ACM SIGSAC Conference on Computer and

Communications Security, CCS ’19, pages 769–784,
New York, NY, USA, 2019. ACM.

[21] Stephen Checkoway, Lucas Davi, Alexandra
Dmitrienko, Ahmad-Reza Sadeghi, Hovav Shacham,
and Marcel Winandy. Return-oriented programming
without returns. In Proceedings of the 17th ACM Con-

ference on Computer and Communications Security,
CCS ’10, pages 559–572, New York, NY, USA, 2010.
ACM.

[22] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou,
Nickolai Zeldovich, and M. Frans Kaashoek. Linux ker-
nel vulnerabilities: State-of-the-art defenses and open
problems. In Proceedings of the Second Asia-Pacific

Workshop on Systems, APSys ’11, pages 5:1–5:5, New
York, NY, USA, 2011. ACM.

[23] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chli-
pala, M. Frans Kaashoek, and Nickolai Zeldovich. Us-
ing crash hoare logic for certifying the fscq file system.
In Proceedings of the 25th Symposium on Operating

Systems Principles, SOSP ’15, page 18–37, New York,
NY, USA, 2015. Association for Computing Machin-
ery.

[24] Cody Cutler, M Frans Kaashoek, and Robert T Morris.
The benefits and costs of writing a {POSIX} kernel
in a high-level language. In 13th {USENIX} Sympo-

sium on Operating Systems Design and Implementation

({OSDI} 18), pages 89–105, 2018.
[25] Nathan Dautenhahn, Theodoros Kasampalis, Will Di-

etz, John Criswell, and Vikram Adve. Nested kernel:
An operating system architecture for intra-kernel priv-
ilege separation. In Proceedings of the Twentieth In-

USENIX Association 2020 USENIX Annual Technical Conference 413

https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf
https://l4re.org/download/snapshots/
https://l4re.org/download/snapshots/
https://fuchsia.dev/fuchsia-src
https://fuchsia.dev/fuchsia-src/development/source_code
https://fuchsia.dev/fuchsia-src/development/source_code
https://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html
https://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html
https://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html
https://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://en.wikipedia.org/wiki/Kernel_page-table_isolation
https://en.wikipedia.org/wiki/Kernel_page-table_isolation
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-a-profile-architecture-2018-developments-armv85a
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-a-profile-architecture-2018-developments-armv85a
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-a-profile-architecture-2018-developments-armv85a
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-a-profile-architecture-2018-developments-armv85a
https://www.redox-os.org/
https://www.redox-os.org/
https://riscv.org/specifications/
https://riscv.org/specifications/
http://sel4.systems/About/Performance/
http://sel4.systems/About/Performance/
https://github.com/seL4/seL4
https://www.sqlite.org/index.html
https://github.com/mit-pdos/fscq/tree/master/xv6
https://github.com/mit-pdos/fscq/tree/master/xv6

ternational Conference on Architectural Support for

Programming Languages and Operating Systems, AS-
PLOS ’15, pages 191–206, New York, NY, USA, 2015.
ACM.

[26] Lucas Davi, David Gens, Christopher Liebchen, and
Ahmad-Reza Sadeghi. Pt-rand: Practical mitigation of
data-only attacks against page tables. In NDSS, 2017.

[27] Francis M David, Ellick M Chan, Jeffrey C Carlyle, and
Roy H Campbell. Curios: improving reliability through
operating system structure. pages 59–72, 2008.

[28] Udit Dhawan, Nikos Vasilakis, Raphael Rubin, Silviu
Chiricescu, Jonathan M Smith, Thomas F Knight Jr,
Benjamin C Pierce, and André DeHon. Pump: a pro-
grammable unit for metadata processing. In Proceed-

ings of the Third Workshop on Hardware and Archi-

tectural Support for Security and Privacy, pages 1–8,
2014.

[29] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and
Haibo Chen. Performance and protection in the zofs
user-space nvm file system. In Proceedings of the

27th ACM Symposium on Operating Systems Princi-

ples, SOSP ’19, pages 478–493, New York, NY, USA,
2019. ACM.

[30] Dong Du, Zhichao Hua, Yubin Xia, Binyu Zang, and
Haibo Chen. Xpc: Architectural support for secure
and efficient cross process call. In Proceedings of the

46th International Symposium on Computer Architec-

ture, ISCA ’19, pages 671–684, New York, NY, USA,
2019. ACM.

[31] Adam Dunkels. lwip-a lightweight tcp/ip stack.
Available from World Wide Web: http://www. sics.

se/ adam/lwip/index. html, 2002.
[32] Kevin Elphinstone and Gernot Heiser. From l3 to sel4

what have we learnt in 20 years of l4 microkernels? In
Proceedings of the Twenty-Fourth ACM Symposium on

Operating Systems Principles, SOSP ’13, pages 133–
150, New York, NY, USA, 2013. ACM.

[33] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exok-
ernel: An operating system architecture for application-
level resource management. In Proceedings of the Fif-

teenth ACM Symposium on Operating Systems Princi-

ples, SOSP ’95, pages 251–266, New York, NY, USA,
1995. ACM.

[34] Úlfar Erlingsson, Martín Abadi, Michael Vrable, Mihai
Budiu, and George C. Necula. Xfi: Software guards for
system address spaces. In Proceedings of the 7th Sym-

posium on Operating Systems Design and Implementa-

tion, OSDI ’06, pages 75–88, Berkeley, CA, USA, 2006.
USENIX Association.

[35] Bryan Ford, Mike Hibler, Jay Lepreau, Patrick Tull-
mann, Godmar Back, and Stephen Clawson. Microker-
nels meet recursive virtual machines. In Proceedings of

the Second USENIX Symposium on Operating Systems

Design and Implementation, OSDI ’96, pages 137–151,
New York, NY, USA, 1996. ACM.

[36] Bryan Ford and Jay Lepreau. Evolving mach 3.0 to a
migrating thread model. In Proceedings of the USENIX

Winter 1994 Technical Conference on USENIX Win-

ter 1994 Technical Conference, WTEC’94, pages 9–9,
Berkeley, CA, USA, 1994. USENIX Association.

[37] Ben Gamsa, Orran Krieger, Jonathan Appavoo, and
Michael Stumm. Tornado: Maximizing locality and
concurrency in a shared memory multiprocessor operat-
ing system. In Proceedings of the Third Symposium on

Operating Systems Design and Implementation, OSDI
’99, pages 87–100, Berkeley, CA, USA, 1999. USENIX
Association.

[38] Spyridoula Gravani, Mohammad Hedayati, John
Criswell, and Michael L Scott. Iskios: Lightweight
defense against kernel-level code-reuse attacks. arXiv

preprint arXiv:1903.04654, 2019.
[39] Mohammad Hedayati, Spyridoula Gravani, Ethan John-

son, John Criswell, Michael L. Scott, Kai Shen, and
Mike Marty. Hodor: Intra-process isolation for high-
throughput data plane libraries. In Proceedings of the

2019 USENIX Conference on Usenix Annual Technical

Conference, USENIX ATC ’19, pages 489–503, Berke-
ley, CA, USA, 2019. USENIX Association.

[40] Dan Hildebrand. An architectural overview of qnx.
In Proceedings of the Workshop on Micro-kernels and

Other Kernel Architectures, pages 113–126, Berkeley,
CA, USA, 1992. USENIX Association.

[41] Charles Jacobsen, Muktesh Khole, Sarah Spall, Scotty
Bauer, and Anton Burtsev. Lightweight capabil-
ity domains: Towards decomposing the linux kernel.
SIGOPS Oper. Syst. Rev., 49(2):44–50, January 2016.

[42] Yeongjin Jang, Sangho Lee, and Taesoo Kim. Breaking
kernel address space layout randomization with intel
tsx. In Proceedings of the 2016 ACM SIGSAC Confer-

ence on Computer and Communications Security, CCS
’16, pages 380–392, New York, NY, USA, 2016. ACM.

[43] Alexandre Joannou, Jonathan Woodruff, Robert Ko-
vacsics, Simon W Moore, Alex Bradbury, Hongyan
Xia, Robert NM Watson, David Chisnall, Michael Roe,
Brooks Davis, et al. Efficient tagged memory. In 2017

IEEE International Conference on Computer Design

(ICCD), pages 641–648. IEEE, 2017.
[44] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June

Andronick, David Cock, Philip Derrin, Dhammika
Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon Win-
wood. sel4: Formal verification of an os kernel. In Pro-

ceedings of the ACM SIGOPS 22Nd Symposium on Op-

erating Systems Principles, SOSP ’09, pages 207–220,
New York, NY, USA, 2009. ACM.

[45] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,

414 2020 USENIX Annual Technical Conference USENIX Association

Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, et al. Spec-
tre attacks: Exploiting speculative execution. In 2019

IEEE Symposium on Security and Privacy (SP), pages
1–19. IEEE, 2019.

[46] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuf-
frida, and Elias Athanasopoulos. No need to hide: Pro-
tecting safe regions on commodity hardware. In Pro-

ceedings of the Twelfth European Conference on Com-

puter Systems, EuroSys ’17, pages 437–452, New York,
NY, USA, 2017. ACM.

[47] Adam Lackorzyński, Alexander Warg, Marcus Völp,
and Hermann Härtig. Flattening hierarchical schedul-
ing. In Proceedings of the Tenth ACM Interna-

tional Conference on Embedded Software, EMSOFT
’12, pages 93–102, New York, NY, USA, 2012. ACM.

[48] Hojoon Lee, Chihyun Song, and Brent Byunghoon
Kang. Lord of the x86 rings: A portable user mode priv-
ilege separation architecture on x86. In Proceedings of

the 2018 ACM SIGSAC Conference on Computer and

Communications Security, CCS ’18, page 1441–1454,
New York, NY, USA, 2018. Association for Computing
Machinery.

[49] R. Levin, E. Cohen, W. Corwin, F. Pollack, and W. Wulf.
Policy/mechanism separation in hydra. In Proceed-

ings of the Fifth ACM Symposium on Operating Sys-

tems Principles, SOSP ’75, pages 132–140, New York,
NY, USA, 1975. ACM.

[50] Henry M. Levy. Capability-Based Computer Systems.
Butterworth-Heinemann, Newton, MA, USA, 1984.

[51] Chuanpeng Li, Chen Ding, and Kai Shen. Quantifying
the cost of context switch. In Proceedings of the 2007

Workshop on Experimental Computer Science, ExpCS
’07, New York, NY, USA, 2007. ACM.

[52] Jochen Liedtke. Improving ipc by kernel design. In
Proceedings of the Fourteenth ACM Symposium on Op-

erating Systems Principles, SOSP ’93, pages 175–188,
New York, NY, USA, 1993. ACM.

[53] Jochen Liedtke. A persistent system in real use - expe-
riences of the first 13 years. pages 2 – 11, 01 1994.

[54] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Ste-
fan Mangard, Paul Kocher, Daniel Genkin, et al. Melt-
down: Reading kernel memory from user space. In 27th

{USENIX} Security Symposium ({USENIX} Security

18), pages 973–990, 2018.
[55] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas

Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading kernel mem-
ory from user space. In Proceedings of the 27th

USENIX Conference on Security Symposium, SEC’18,
pages 973–990, Berkeley, CA, USA, 2018. USENIX

Association.
[56] James Litton, Anjo Vahldiek-Oberwagner, Eslam El-

nikety, Deepak Garg, Bobby Bhattacharjee, and Peter
Druschel. Light-weight contexts: An os abstraction for
safety and performance. In Proceedings of the 12th

USENIX Conference on Operating Systems Design and

Implementation, OSDI’16, pages 49–64, Berkeley, CA,
USA, 2016. USENIX Association.

[57] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and
Yubin Xia. Thwarting memory disclosure with effi-
cient hypervisor-enforced intra-domain isolation. In
Proceedings of the 22Nd ACM SIGSAC Conference

on Computer and Communications Security, CCS ’15,
pages 1607–1619, New York, NY, USA, 2015. ACM.

[58] Anna Lyons, Kent McLeod, Hesham Almatary, and
Gernot Heiser. Scheduling-context capabilities: A prin-
cipled, light-weight operating-system mechanism for
managing time. In Proceedings of the Thirteenth Eu-

roSys Conference, EuroSys ’18, pages 26:1–26:16, New
York, NY, USA, 2018. ACM.

[59] Yandong Mao, Haogang Chen, Dong Zhou, Xi Wang,
Nickolai Zeldovich, and M Frans Kaashoek. Software
fault isolation with api integrity and multi-principal
modules. In Proceedings of the Twenty-Third ACM

Symposium on Operating Systems Principles, pages
115–128, 2011.

[60] Stephen McCamant and Greg Morrisett. Evaluating sfi
for a cisc architecture. In Proceedings of the 15th Con-

ference on USENIX Security Symposium - Volume 15,
USENIX-SS’06, Berkeley, CA, USA, 2006. USENIX
Association.

[61] Steven McCanne and Van Jacobson. The bsd packet
filter: A new architecture for user-level packet capture.
In USENIX winter, volume 46, 1993.

[62] Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, and
Haibo Chen. Skybridge: Fast and secure inter-process
communication for microkernels. In Proceedings of

the Fourteenth EuroSys Conference 2019, EuroSys ’19,
pages 9:1–9:15, New York, NY, USA, 2019. ACM.

[63] Vikram Narayanan, Yongzhe Huang, Gang Tan, Trent
Jaeger, and Anton Burtsev. Lightweight kernel isola-
tion with virtualization and vm functions. In Proceed-

ings of the 16th ACM SIGPLAN/SIGOPS International

Conference on Virtual Execution Environments, pages
157–171, 2020.

[64] Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon,
and Taesoo Kim. Libmpk: Software abstraction for
intel memory protection keys (intel mpk). In Proceed-

ings of the 2019 USENIX Conference on Usenix Annual

Technical Conference, USENIX ATC ’19, pages 241–
254, Berkeley, CA, USA, 2019. USENIX Association.

[65] Sergej Proskurin, Marius Momeu, Seyedhamed
Ghavamnia, Vasileios P Kemerlis, and Michalis Poly-

USENIX Association 2020 USENIX Annual Technical Conference 415

chronakis. xmp: Selective memory protection for
kernel and user space. In Proceedings of 41st IEEE

Symposium on Security and Privacy, S&P ’20, 2020.
[66] Franklin Reynolds. An architectural overview of al-

pha: A real-time, distributed kernel. In Proceedings of

the Workshop on Micro-kernels and Other Kernel Ar-

chitectures, pages 127–146, Berkeley, CA, USA, 1992.
USENIX Association.

[67] O. Schwahn, S. Winter, N. Coppik, and N. Suri. How
to fillet a penguin: Runtime data driven partitioning of
linux code. IEEE Transactions on Dependable and Se-

cure Computing, 15(6):945–958, Nov 2018.
[68] David Sehr, Robert Muth, Cliff Biffle, Victor Khi-

menko, Egor Pasko, Karl Schimpf, Bennet Yee, and
Brad Chen. Adapting software fault isolation to con-
temporary cpu architectures. In Proceedings of the 19th

USENIX Conference on Security, USENIX Security’10,
pages 1–1, Berkeley, CA, USA, 2010. USENIX Associ-
ation.

[69] Hovav Shacham. The geometry of innocent flesh on
the bone: Return-into-libc without function calls (on
the x86). In Proceedings of the 14th ACM Conference

on Computer and Communications Security, CCS ’07,
pages 552–561, New York, NY, USA, 2007. ACM.

[70] Jonathan S. Shapiro, Jonathan M. Smith, and David J.
Farber. Eros: A fast capability system. In Proceedings

of the Seventeenth ACM Symposium on Operating Sys-

tems Principles, SOSP ’99, pages 170–185, New York,
NY, USA, 1999. ACM.

[71] Livio Soares and Michael Stumm. Flexsc: Flexible sys-
tem call scheduling with exception-less system calls.
In Proceedings of the 9th USENIX Conference on Op-

erating Systems Design and Implementation, OSDI’10,
pages 33–46, Berkeley, CA, USA, 2010. USENIX As-
sociation.

[72] Udo Steinberg and Bernhard Kauer. Nova: A
microhypervisor-based secure virtualization architec-
ture. In Proceedings of the 5th European Conference on

Computer Systems, EuroSys ’10, pages 209–222, New
York, NY, USA, 2010. ACM.

[73] Mincheol Sung, Pierre Olivier, Stefan Lankes, and Bi-
noy Ravindran. Intra-unikernel isolation with intel
memory protection keys. In Proceedings of the 16th

ACM SIGPLAN/SIGOPS International Conference on

Virtual Execution Environments, pages 143–156, 2020.
[74] Michael M. Swift, Brian N. Bershad, and Henry M.

Levy. Improving the reliability of commodity operating
systems. In Proceedings of the Nineteenth ACM Sym-

posium on Operating Systems Principles, SOSP ’03,
pages 207–222, New York, NY, USA, 2003. ACM.

[75] Donghai Tian, Xi Xiong, Changzhen Hu, and Peng Liu.
A policy-centric approach to protecting os kernel from
vulnerable lkms. Software: Practice and Experience,

48(6):1269–1284, 2018.
[76] Dan Tsafrir. The context-switch overhead inflicted

by hardware interrupts (and the enigma of do-nothing
loops). In Experimental Computer Science on Experi-

mental Computer Science, ecs’07, pages 3–3, Berkeley,
CA, USA, 2007. USENIX Association.

[77] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O.
Duarte, Michael Sammler, Peter Druschel, and Deepak
Garg. Erim: Secure, efficient in-process isolation with
protection keys (mpk). In Proceedings of the 28th

USENIX Conference on Security Symposium, SEC’19,
pages 1221–1238, Berkeley, CA, USA, 2019. USENIX
Association.

[78] Lluïs Vilanova, Muli Ben-Yehuda, Nacho Navarro,
Yoav Etsion, and Mateo Valero. Codoms: Protecting
software with code-centric memory domains. In 2014

ACM/IEEE 41st International Symposium on Computer

Architecture (ISCA), pages 469–480. IEEE, 2014.
[79] Lluís Vilanova, Marc Jordà, Nacho Navarro, Yoav Et-

sion, and Mateo Valero. Direct inter-process communi-
cation (dipc): Repurposing the codoms architecture to
accelerate ipc. In Proceedings of the Twelfth European

Conference on Computer Systems, EuroSys ’17, pages
16–31, New York, NY, USA, 2017. ACM.

[80] Robert Wahbe, Steven Lucco, Thomas E. Anderson,
and Susan L. Graham. Efficient software-based fault
isolation. In Proceedings of the Fourteenth ACM Sym-

posium on Operating Systems Principles, SOSP ’93,
pages 203–216, New York, NY, USA, 1993. ACM.

[81] Xi Wang, David Lazar, Nickolai Zeldovich, Adam Chli-
pala, and Zachary Tatlock. Jitk: A trustworthy in-kernel
interpreter infrastructure. In 11th {USENIX} Sympo-

sium on Operating Systems Design and Implementation

({OSDI} 14), pages 33–47, 2014.
[82] Robert N. M. Watson, Robert M. Norton, Jonathan

Woodruff, Simon W. Moore, Peter G. Neumann,
Jonathan Anderson, David Chisnall, Brooks Davis, Ben
Laurie, Michael Roe, Nirav H. Dave, Khilan Gudka,
Alexandre Joannou, A. Theodore Markettos, Ed Maste,
Steven J. Murdoch, Colin Rothwell, Stacey D. Son, and
Munraj Vadera. Fast protection-domain crossing in
the cheri capability-system architecture. IEEE Micro,
36(5):38–49, September 2016.

[83] Emmett Witchel, Josh Cates, and Krste Asanović. Mon-
drian memory protection. In Proceedings of the 10th

International Conference on Architectural Support for

Programming Languages and Operating Systems, AS-
PLOS X, pages 304–316, New York, NY, USA, 2002.
ACM.

[84] Emmett Witchel, Junghwan Rhee, and Krste Asanović.
Mondrix: Memory isolation for linux using mondri-
aan memory protection. In Proceedings of the Twenti-

eth ACM Symposium on Operating Systems Principles,

416 2020 USENIX Annual Technical Conference USENIX Association

SOSP ’05, pages 31–44, New York, NY, USA, 2005.
ACM.

[85] Jonathan Woodruff, Robert NM Watson, David Chis-
nall, Simon W Moore, Jonathan Anderson, Brooks
Davis, Ben Laurie, Peter G Neumann, Robert Norton,
and Michael Roe. The cheri capability model: Revisit-
ing risc in an age of risk. In 2014 ACM/IEEE 41st Inter-

national Symposium on Computer Architecture (ISCA),
pages 457–468. IEEE, 2014.

[86] Xi Xiong, Donghai Tian, Peng Liu, et al. Practical pro-
tection of kernel integrity for commodity os from un-
trusted extensions. In NDSS, volume 11, 2011.

[87] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley

Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka,
Neha Narula, and Nicholas Fullagar. Native client: A
sandbox for portable, untrusted x86 native code. In Pro-

ceedings of the 2009 30th IEEE Symposium on Secu-

rity and Privacy, SP ’09, pages 79–93, Washington, DC,
USA, 2009. IEEE Computer Society.

[88] Bennet Yee, David Sehr, Gregory Dardyk, J Bradley
Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka,
Neha Narula, and Nicholas Fullagar. Native client: A
sandbox for portable, untrusted x86 native code. In
2009 30th IEEE Symposium on Security and Privacy,
pages 79–93. IEEE, 2009.

USENIX Association 2020 USENIX Annual Technical Conference 417

	Introduction
	Motivation
	Invoking Servers with IPCs is Costly
	IPC Overhead Analysis
	Using Intel MPK in Kernel
	Building Isolated Domains

	UnderBridge
	Execution Domains
	IPC Gates
	Server Migration

	Enforcing Isolation in UnderBridge
	Unauthorized IPCs Prevention
	Privilege Deprivation
	Security Analysis

	Implementation
	Performance Evaluation
	IPC Performance Analysis
	Application Benchmarks

	Related Work
	Conclusion
	Acknowledgement

