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Abstract

Persistent transactional memory (PTM) programming
model has recently been exploited to provide crash-
consistent transactional interfaces to ease programming atop
NVM. However, existing PTM designs either incur high
reader-side overhead due to blocking or long delay in the
writer side (efficiency), or place excessive constraints on per-
sistent ordering (scalability).

This paper presents Pisces, a read-friendly PTM that ex-
ploits snapshot isolation (SI) on NVM. The key design of
Pisces is based on two observations: the redo logs of transac-
tions can be reused as newer versions for the data, and an intu-
itive MVCC-based design has read deficiency. Based on the
observations, we propose a dual-version concurrency control
(DVCC) protocol that maintains up to two versions in NVM-
backed storage hierarchy. Together with a three-stage com-
mit protocol, Pisces ensures SI and allows more transactions
to commit and persist simultaneously. Most importantly, it
promises a desired feature: hiding NVM persistence over-
head from reads and allowing nearly non-blocking reads.

Experimental evaluation on an Intel 40-thread (20-core)
machine with real NVM equipped shows that Pisces outper-
forms the state-of-the-art design (i.e., DUDETM) by up to
6.3× for micro-benchmarks and 4.6× for TPC-C new order
transaction, and also scales much better. The persistency cost
is from 19% to 50% for 40 threads.

1 Introduction

Non-volatile memory (NVM) such as phase-change mem-
ory (PCM) [46, 67, 78], resistive random-access memory
(ReRAM) [9, 45], and Intel/Micron’s 3D-XPoint [2, 4], is
revolutionizing the storage hierarchy thanks to the promis-
ing features like byte-addressability and non-volatility with a
close-to-DRAM speed. By supporting persistent data access
via CPU load/store instructions, these technologies bring am-
ple opportunities for applications to achieve optimal perfor-
mance as well as efficient crash consistency [20, 62].

To efficiently program on NVM with a balance among
good programmability, high performance, and low soft-
ware overhead, persistent transactional memory (PTM), also

known as durable (memory) transactions, has been exploited
by prior work [21, 37, 44, 49, 56, 74, 76]. Through com-
bining transactional memory [29, 34, 66, 68, 70] and NVM,
PTM offers the properties of atomicity, consistency, isolation,
durability (ACID) to applications on NVM.

To ensure the durability for transactions, some prior de-
signs [21, 44, 56, 74] need to persist a transaction’s log
while holding the locks of the data being modified or ex-
plicitly track the dependencies among transactions through
locks. This, however, may block concurrent read operations
on the same data. The long blocking duration may become
a severe performance bottleneck due to the amplified persis-
tence overhead incurred by high write latency of NVM (usu-
ally 10× compared to DRAM) (low read efficiency). This is
especially true when read operations dominate in many work-
loads [15, 19, 52, 63]. In contrast, another design [49] elim-
inates the persistence latency from a transaction’s critical
path through relaxing the durability semantics, i.e., making
a transaction’s modifications visible before its log reaches
NVM. However, such a design sacrifices the durability guar-
antee and requires to apply logs back to the durable data ac-
cording to a total order. Unfortunately, such a strict persis-
tence ordering may be the bottleneck of scalability since it
is hard to parallelize the persistence operations. Overall, it
is challenging to design a PTM system that insulates read-
ers from being affected by high NVM persistence overhead
while enforcing strong durability as well as avoids overly-
constrained persistence ordering simultaneously.

We notice that snapshot isolation (SI) [8, 12] can avoid
read-write conflicts and suffices for many real-world applica-
tions [6, 11, 26, 28, 33, 47, 48, 61, 68, 77], which makes
it possible to design a PTM that allows a transaction to
persist its log in its critical path (no sacrifice the durabil-
ity), while hiding the high persistence overhead from con-
current read operations. Multi-version concurrency control
(MVCC) [13, 28] is a common choice to achieve SI. We
observe that the (redo) logs which will be finally applied to
the durable data (old) can be regarded as a new data version,
which enables us to efficiently introduce MVCC to PTM.

However, after a deep analysis, we find that a straightfor-



ward MVCC-based PTM design not only brings high reader-
side overhead due to read-indirection problems (challenge-
1), i.e., locating the consistent objects in the version lists, but
also still leaves the readers affected by the NVM persistence
overhead (challenge-2). So, we further present Pisces, a read-
friendly PTM design that also embraces SI while solving the
above two problems and achieves both high read efficiency
and good scalability.

Specifically, Pisces proposes dual-version concurrency

control (DVCC) inspired by MVCC and scalable synchro-
nization primitives [18, 51, 54, 55], to solve challenge-1.
DVCC still avoids read-write conflicts and thus allows high
parallelism for transaction execution, but only keeps one or
two versions (using the log as the newer version) for each
data object, which minimizes the high cost for maintaining
multiple versions in NVM as well as searching in the version
lists. To solve challenge-2, Pisces hides the NVM persistence
overhead from readers through three-stage commit that sepa-
rates the durable point and the visible point of a (read-write)
transaction and minimizes the possible read-blocking time to
the duration of two DRAM stores. This blocking rarely hap-
pens since the possible blocking time is extremely short. A
transaction persists its logs (new versions for objects) into
NVM in a persist stage (durable) and makes its logs read-
able to other transactions in a following concurrency com-
mit stage (visible). Note that the potential blocking period
resides in the latter stage. Hence, the NVM persistence over-
head can be hidden from readers. Besides, a transaction ea-
gerly reclaims the old versions of objects and overrides them
with new versions in the last write-back stage, which is for
avoiding indirect reads. Furthermore, Pisces also enables
flush-diff (persist modifications only) to prevent excessive
NVM persistence operations and leverages group-commit to
reduce the overhead for write transactions.

In all, Pisces hides the NVM persistence overhead from
readers and promises almost non-blocking reads. Pisces guar-
antees snapshot isolation (a formal proof is also provided),
and promises crash consistency that can restore the system
to a consistent snapshot after crashes. In essence, Pisces ex-
plores a trade-off between isolation and performance by loos-
ening the isolation level for better performance.

We have implemented and evaluated Pisces on a 40-
thread machine. Evaluation results show that Pisces has a
notably higher throughput and better scalability compared
with the state-of-the-art design (i.e., DUDETM [49]). Specif-
ically, Pisces achieves up to 6.3× throughput improvement in
micro-benchmarks and can improve the throughput of TPC-
C new order transaction [24] and TATP benchmark [72] by
460% and 64%, respectively.

In summary, this paper makes the following contributions:

• An observation that redo logs can be used as newer
data versions and an intuitive MVCC-based PTM de-
sign with the observation. A careful analysis of the read-
inefficiency of the MVCC-based design.

• A first PTM with snapshot isolation (Pisces), which
leverages DVCC and three-stage commit to benefit read-
ers most.

• An implementation and evaluation on a real machine
with NVM that demonstrate Pisces’s efficiency and scal-
ability.

2 Background & Overview

Comparing with database transaction, Transactional memory
(TM) [38] ensures atomicity, isolation and consistency (ACI),
but lacks the important property of durability. However, the
emergence of non-volatile memory provides an opportunity
to equip TM with durability [44, 49, 56, 74, 76]. This section
first introduces the backgrounds of NVM and PTM, then pro-
vides an overview of our system.

2.1 Background

NVM. The recent release of Intel Optane DC Persistent
Memory [2] marks the transition of non-volatile memory
(NVM) technology from research prototypes to mainstream
products. NVM promises to provide fast data persistency. Ac-
cording to current studies [47, 79, 81], NVM has the fol-
lowing three features. First, most NVM designs are byte-
addressable. This is one major reason why we can di-
rectly replace DRAM with NVM. Second, NVM has close-
to-DRAM read latency, but about 10× write latency com-
paring with DRAM. For example, PCM’s write latency is
150∼1000ns and ReRAM’s is 500ns, while DRAM has only
60ns write latency [47, 79]. Third, special instructions [3] are
provided to help persist the data: 1). pflush (e.g., clwb) will
flush a cache line from CPU cache to NVM. 2). pfence (e.g.,
mfence) ensures all previous pflush instructions finish.

PTM. There are already various researches which build
Persistent Transactional Memory (PTM) systems by leverag-
ing NVM [21, 23, 44, 49, 56, 74]. However, most of them
focus on optimizing the persistence overhead [21, 44, 56, 74].
For example, Kamino-tx [56] removes the overhead of data
copy in a transaction’s critical path by maintaining a backup
of all the data. However, in these systems, an on-going write
operations usually block conflicting read operations to en-
sure the consistency. As a result, these read operations will
also suffer from NVM’s high write latency.

A state-of-the-art design, called DUDETM [49], tries to
address this issue with a decoupled PTM design: it temporar-
ily buffers the running transaction’s updates and its redo
log in DRAM, then a number of threads will flush the log
to NVM asynchronously. Furthermore, a dedicated thread
(named reproduce thread) will replay the log to apply the up-
dates to the persistent objects in NVM. However, once the
log buffer becomes full because the reproduce thread cannot
timely replay and clean the logs, the system needs to stall to
wait for the reproduce thread to catch up. To ensure the con-
sistency of the persistent state, the reproduce thread needs
to replay the operations in the log sequentially. As a result,



the reproduce thread harms the system scalability. Figure 1-
(a) shows the scalability issue of DUDETM: its performance
can only scale up to 8 cores, after which the performance will
be bottlenecked by the reproduce thread.
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Fig. 1: (a) A hash table benchmark with 40% update rate. (b) A
comparison on read-only transaction latency.

2.2 Overview

Goal. Comparing with existing works, Pisces is a PTM sys-
tem with a read-friendly design, since lots of workloads us-
ing transactions are read-dominated [15, 19, 22, 30, 52, 63]:
for example, the read-write ratio in the update operation of
an 8 layer (8-15 keys per node) B+-tree is about 80:1; In
the TPC-E and TATP [25, 72] benchmarks, about 80% of the
transactions are read-only.

Strawman. Pisces is based on the intuition that snapshot

isolation (SI) [8, 12] is able to avoid blocking reads by con-
flicting writes. At the same time, SI is applicable not only to
database workloads [6, 11, 26, 28, 33, 47, 77], but also to TM
workloads [48, 61, 68]. For example, Lu et al. [53, 68] prove
that SI is enough to support a concurrent skip list. Thus, both
database and STM systems have begun to use SI to improve
concurrency [48, 61, 68].

However, is an intuitive SI implementation good enough to
achieve our goal, a read oriented PTM? To answer this ques-
tion, we implement a prototype system to provide SI based
on multi-version concurrency control. Each object maintains
a list of multiple versions and is identified by an ID. Each ver-
sion has a timestamp to indicate its committed point-in-time.
When a transaction starts, it sets a start timestamp based on
the global timestamp kept by the system. During execution,
to read an object, a transaction finds the most recent version
which has a smaller timestamp than the transaction’s start
timestamp by traversing the object’s list. For write, a trans-
action buffers updates in the write set and records the opera-
tion in a redo log. To commit its updates, a transaction first
acquires the locks of all objects it tries to update. Then it de-
tects write-write conflicts by checking the latest timestamp
of these objects. If any object’s latest timestamp is larger
than the transaction’s start timestamp, then the transaction
is aborted. After passing the validation, the transaction re-
trieves its commit timestamp and updates the global times-
tamp. Then, the transaction flushes its log and the commit
timestamp from CPU cache into the NVM, then flushes the
updates in the write set to the persistent objects in NVM. At
last, it releases all locks.

Issues. To analyze the efficiency of this design, we use it
to implement concurrent data structures and compare with
their native (single-threaded) implementations. Figure 1-(b)
shows the evaluation results: the intuitive design has consid-
erable overhead on read requests’ latency because of the fol-
lowing problems:
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Fig. 2: (a) An ordered linked list structure in our MVCC-based
PTM. Black arrows represent pointers in different version lists,
while the gray arrows indicate the pointers in the linked list. (b)
Read operations get blocked in MVCC.

First, traversing the multi-version list of each object in-
creases the latency. This is not only because a transaction
with small start timestamp may need to perform multiple
indirect memory accesses, but also because the random ac-
cesses may harm the cache locality and get blocked due to
the cache line being evicted to NVM. Figure 2 (b) gives a
simple example: if a transaction traverses this 3-object list, it
actually needs to traverse a much longer list which at least
contains three objects and three object IDs.

Second, read operations may still be blocked by the NVM
persist operations. Specifically, when a reader accesses an ob-
ject which is locked by a writer, the reader may be blocked
until the writer commits. The reason is the reader is not sure
if the writer will have a smaller commit timestamp than its
start timestamp or not. Unfortunately, the writer cannot com-
mit until it flushes all its logs into NVM and applies the up-
dates in its write set. Figure 2 (b) gives a simple example: T1

starts with timestamp 6. When it reads object D, it finds D is
locked by T2. Then, it has to be blocked, as T2 may update
D with a timestamp smaller than 6.

Basic idea. We develop Pisces to solve above issues based
on the following basic designs:

Dual-version concurrency control (DVCC). To reduce
the cost of traversing an object’s list, Pisces keeps up to
two versions for each object: original object and object copy.
When a transaction tries to write an object, it creates and
links a new copy to the original object. When the transaction
commits, it writes the object copy back to the original object.
Concurrent transactions update the same object exclusively
by acquiring a lock. Read transactions are able to directly ac-
cess either version based on their timestamps. Furthermore,
to reduce unnecessary NVM writes, we reuse the updates in
the redo log as object copy. However, the challenge to im-
plement DVCC is how to ensure an original object won’t be
overwritten when it may still be needed by some outstanding



transactions with smaller start timestamps.
Three-stage commit protocol. To reduce the blocking

overhead in the MVCC design, Pisces proposes a three-stage
commit protocol: the commit phase is divided into concur-
rency commit stage, and write-back stage. In the persist
stage, a transaction flushes its log into NVM. In the con-
currency commit stage, the transaction updates its end times-
tamp (commit timestamp) and the timestamps of all the ob-
ject copies in the redo log atomically. In the write-back stage,
the transaction writes all object copies back to their original
objects. By decoupling different functionalities of the com-
mit phase, Pisces allows nearly non-blocking reads. But the
challenge lies in how to atomically update both the end times-
tamp and the timestamps of object copies efficiently.

Limitation. The main limitation of Pisces is it only pro-
vides SI which does not work for all applications, and SI suf-
fers from the well-known write skew anomaly1 under certain
conditions. However, there is a long line of research [16, 33,
48, 53] on how to detect or eliminate write skew anomalies
for SI. Moreover, making SI serializable is also well stud-
ied [59, 64, 69, 75]. Leveraging these techniques to provide
a stronger isolation level is future work. Currently, careful
programming on Pisces is required.

3 Design
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Fig. 3: The memory layout of an object, per-transaction log and per-
thread metadata. Arrows represent pointers.

Layout. Figure 3 shows the memory layout of three crit-
ical components (data object, per-transaction log and per-
thread metadata) in Pisces. Pisces attaches each object with
a pointer (named next and initialized as 0) which may point
to a next version of this object and is also used as a write
lock that needs to be exclusively acquired by a writer. Pisces
pre-allocates log area for each thread and each transaction
gets its log from the log area of the execution thread when it
begins. Pisces also keeps per-thread metadata to record the
metadata of the running transaction in each thread (a thread
executes at most one running transaction at a time). Object
copies as the next (newer) versions of objects reside in the
transactions’ log and each object copy contains two pointers.
One is named as source and points to the original object. The
other is named as writer and points to the running transaction
that owns this log (creates this copy).

1A typical write skew example is: One transaction reads A and writes B
while another concurrent transaction reads B and writes A.

For the challenges mentioned in the above section, we
provide simple but efficient solutions accordingly: First, to
prevent an original version from being falsely overwritten,
we leverage an RCU-similar design (grace period detection)
to block the writer in the write-back phase until the origi-
nal version in home location is safe to be overwritten. Note
that the blocking time will not be exposed to readers. Sec-
ond, to atomically update a transaction’s end timestamp and
each copy’s version timestamp in an efficient way, we do not
explicitly maintain the version timestamp for each copy. In-
stead, each copy contains the writer pointer and reuses the
transaction’s end timestamp as its version timestamp. As a
result, atomicity is guaranteed by simply updating the end
timestamp of the write transaction. Next, we discuss the de-
tails about the algorithm whose pseudo code is provided in
Algorithm 1 and the correctness argument.

3.1 Algorithm

TM_Start begins a transaction. A transaction marks its status
as ACTIVE first, executes a fence instruction and reads the
global timestamp (globalTS) as its start timestamp (startTS).
The fence instruction ensures line 2 is executed before line 4.

TM_Read returns a pointer for reading an object. It first reads
the value of next pointer in the original object and returns
the original object directly if next is zero. This is the fast

path: accessing the pointer located just before the object in-
troduces nearly-zero overhead because the CPU will prefetch
adjacent cache lines. If next is non-zero, which means there
exists an object copy, TM_Read returns the object copy when
it is created by the current transaction (line 12) or its version
is no greater than the current transaction’s start timestamp
(line 15). There is only one rare case in which TM_Read

needs to wait (line 14). We discuss this later when introduc-
ing TM_Commit.

TM_Write returns a pointer for writing an object. A trans-
action can directly write a copy created by itself (line 21
to 23). When writing an object for the first time, a transac-
tion reserves an area for the object copy in its log and tries
to acquire the object’s write lock (i.e., next pointer) with a
compare-and-swap instruction (line 25). If fails to lock, the
transaction aborts and restarts after a random delay, which
also avoids deadlocks. Otherwise, it copies the original ob-
ject’s content to the object copy and can directly read or write
the copy now. Pisces makes copies (redo log) at object gran-
ularity, which mitigates the read-indirection problem of redo
logging at byte granularity. Pisces chooses encounter-time
locking to detect conflicts early and thus can avoid unneces-
sary NVM writes. Also, an object’s write lock ensures that it
can only be updated sequentially.

TM_Commit always successfully commits a transaction. A
transaction marks its status as INACTIVE, indicating it no
longer reads any object. It commits directly if it is a read-only
transaction. A read-write transaction needs to go through



Algorithm 1: Pseudo code of Pisces
1:Function TM_START(tx)
2: tx.status = ACTIVE
3: fence
4: tx.startTS = globalTS
5: tx.endTS = INF

6:

7:Function TM_READ(tx, p_obj)
8: next = p_obj.next

9: if next is EMPTY then
10: return p_obj // fast path

11: wtx = next.writer

12: if wtx is tx then
13: return next

14: wait until wtx.inCritical is FALSE
15: if wtx.endTS ≤ tx.startTS then
16: return next

17: else
18: return p_obj

19:

20:Function TM_WRITE(tx, p_obj)
21: if p_obj.next is NON-EMPTY
22: and p_obj.next.writer is tx then
23: return p_obj.next

24: copy = tx.log.alloc(p_obj)
25: copy.writer = tx

26: if CAS(p_obj.next, EMPTY, copy) fails then
27: abort()

28: copy.source = p_obj
29: memcpy_content(copy, p_obj) // p_obj -> copy
30: return copy

31:

32:Function TM_COMMIT(tx)
33: tx.status = INACTIVE
34: // stage 1: persist stage

35: if tx.log is EMPTY then
36: return

37: pflush(tx.log)
38: pfence
39: tx.log.persistTS = globalTS
40: pflush(tx.log.persistTS)
41: pfence
42: // stage 2: concurrency commit stage
43: tx.inCritical = TRUE
44: fence
45: tx.endTS = globalTS + 1
46: tx.inCritical = FALSE
47: AtomicInc(globalTS)
48: // stage 3: write-back stage
49: WRITEBACK(tx)

50:

51:Function WRITEBACK(tx)
52: while exists an ACTIVE transaction t do
53: if t.startTS < tx.endTS then
54: wait

55: for each copy in tx.log do
56: memcpy_content(copy.source, copy)
57: pflush(copy.source.content)
58: copy.source.next = EMPTY

59: pfence // not necessary for correctness

three stages. In the persist stage, a transaction persists2 all
the object copies in its log into NVM (line 37-38). After
that, it retrieves the value of the global timestamp as its log’s
persist timestamp (line 39) and makes the persistTS persis-
tent (line 40-41). The pfence instruction in line 38 guaran-
tees the log’s content reaches NVM before its persistTS, and
the pfence instruction in line 41 ensures both the log and its
persistTS reaches NVM. A checksum can be appended to
reduce the two fences to one [65]. A transaction’s updates
become durable once its persistTS reaches NVM (durable

point). After a crash, a recovery procedure will replay trans-
actions according to the redo logs and in persistTS order.

In the concurrency commit stage, the transaction updates
its timestamp atomically by updating the 64 bit endTS with
the globalTS (line 45). A boolean flag inCritical is used to
protect this update to make sure the updated endTS is even-
tually visible to concurrent reads. For example, T1 may read
the globalTS and update its endTS. However, the updated
endTS may be kept in the CPU store buffer and waits to be
flushed to CPU cache. As a result, a concurrent transaction
T2 whose startTS is not less then T1’s endTS may fail to ob-
serve T1’s update. With the inCritical flag, T1 will be blocked
until inCritical is disabled before it tries to read T2’s endTS
(line 14, 15). This ensures T2’s updates on endTS is even-
tually visible to T1. As TSO architecture may reorder read-
/write instructions, one fence3 (line 44) is needed to ensure
the execution order of line 43 and 45.

In the write-back stage, the transaction first waits for all
active transactions whose startTS is less than its endTS to
finish (line 52-54). This period actually is the grace period.
It avoids falsely overwriting an original object which may
be needed by transactions with small startTS. Because after
this period, all threads are either in an inactive state (not exe-
cuting transactions) or executing transactions with a startTS
larger than the original object’s timestamp. Therefore, the
original object is dead which means it is no longer needed
by any transactions. At the same time, this period also helps
to detect write-write conflicts. Considering another conflict-
ing transaction with smaller startTS, but access the same ob-
ject after this transaction. This transaction will be blocked at
the write-back stage and cannot release the lock. So, the con-
flicting transaction will abort since it fails to acquire the lock
when accessing the object (line 26). At the end of the write-
back stage, it writes each next object to the original object
(line 56-57) and releases locks by clearing next fields (line
58).

Programming: Each transaction should be surrounded
by TM_Start and TM_Commit. For reading/writing an ob-
ject, it first uses TM_Read/TM_Write to achieve the ob-

2In the current implementation on Intel CPU, Pisces uses clwb to flush
cacheline and MFENCE to ensure previous flushed cachelines reach NVM.

3Currently, Pisces uses MFENCE [3] instructions which ensures the
CPU store buffer is always drained besides serializing load and store op-
erations.



ject pointer and then directly accesses that object with the
pointer. Pisces also offers helper functions (TM_Read_Field

and TM_Write_Field) to ease programming.

3.2 Log Recycle

Pisces stores logs in per-thread ring buffers and lets each
thread recycle its own logs. Generally speaking, there are two
principles for log recycle in Pisces for snapshot isolation and
crash consistency, separately.
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Fig. 4: T1 and T2 are two read-write transactions in one thread. T2
happens after T1. Colored rectangles represent transactions’ logs.

P-1: A transaction log can only be recycled after all the

copies in it are dead. A transaction creates new versions
of objects in its log and exposes them to other transactions.
As shown in Figure 4, after a transaction T1 writes the new
versions back to the original objects, it is possible that the
transaction’s log is still required. For example, another trans-
action can read T1’s log if it starts before T1 unlocks the
objects and its startTS is no smaller than A’s endTS. So,
a transaction will not reclaim its own log. Instead, when a
following read-write transaction (T2) finishes, the execution
thread marks the log of the previous read-write transaction
(T1) as reclaimable. Similar to how RCU grace periods can
help safely overwriting original objects, the end of the grace
period in T2’s write-back stage can ensure other transactions
no longer access T1’s log. Specifically, the end of this grace
period ensures (recall line 52-54 in Algorithm 1): previous
transactions that may access A1 and B1 in T1’s log due to
smaller startTS are finished. Therefore, Pisces guarantees all
the copies in a log are dead before recycling the log, which
achieves P-1.

P-2: A transaction log can only be recycled no earlier than

all the logs with smaller persist timestamps are recycled. Sup-
pose a transaction A updates an object before another trans-
action B. If B’s log is recycled before A and a crash happens,
B’s updates will lose after recovery because A will be redone
according to its log. To enforce P-2, Pisces uses an epoch-
based mechanism for recycling logs. It logically distributes
logs to epochs according to their persist timestamps. First,
an execution thread marks a transaction’s log as reclaimable
through recording the transaction’s persist timestamp as the
thread’s reclaim timestamp (a per-thread variable). Second,
an execution thread will atomically advance the global epoch

when it finds that all the threads’ reclaim timestamp exceeds
the current global epoch. Once the global epoch increases,
the logs belong to the previous epoch are no longer required,
and the corresponding log area can be reused.

3.3 Proof Sketch of Snapshot Isolation

A formal proof can be found in [1]. According to the speci-
fication of snapshot isolation [8], we prove Pisces is correct
by proving the following two theorems are correct.
THEOREM 1 (SNAPSHOT WRITE).

If two transactions update the same object, then one trans-
action’s start TS (short for timestamp) should be greater than
another’s end TS.

PROOF. Based on the fact that, because of locking (line 26,
58), the conflicting transactions update the same object se-
quentially, we only need to prove the latter’s start TS is al-
ways larger than the former’s end TS. Pisces ensures this in-
variant by aborting the latter one when it gets a smaller (ille-
gal) start TS: let’s assume both of Ti and T j access object x

and Ti is before T j . If T j’s start TS is smaller than Ti’s end
TS, Ti will be blocked by the active T j at the write back phase
(line 52-54). T j must be active because, by the assumption,
it will access x after Ti. Thus, when T j accesses x, it will find
the lock is held by Ti and abort itself.

Before giving Theorem 2, we first define the TS of an ob-

ject as the end TS of its last writer.
THEOREM 2 (SNAPSHOT READ).

If a transaction Tr reads an object x with timestamp TSx,
then: 1) Tr’s start TS is not less than TSx; and 2) There does
not exist a transaction Tw that updates x and its end TS is
larger than TSx, but not greater than Tr’s start TS.

PROOF. To prove Pisces holds the first invariant, we show
that the x’s copy returned by TM_READ must be committed
by a transaction whose end TS is not greater than Tr’s start
TS. First, considering the case TM_READ returns x’s origi-
nal version (line 10, 18). On the one hand, Pisces ensures that,
when Tr starts, all objects’ original versions have timestamp
which is not greater than Ti’s start TS. On the other hand,
Pisces also forbids any transaction whose end TS is greater
than Ti’s start TS to overwrite the original version (line 52-
54). Next, we consider the case that TM_READ returns x’s
the next version (line 13, 16). Pisces ensures the invariant by
adding an extra constraint that the writer’s end TS must be
not greater than Tr’s start TS (line 15). 4

Instead of directly showing Pisces holds the second invari-
ant, we prove a variant: if Tw’s end TS is not larger than Tr’s
start TS (assumption), then it is also not larger than TSx. By
the assumption above, we can have Tr starts (line 4) after
Tw reads the global TS in commit phase (line 45). Now, let’s
consider two cases: 1). Tr reads x before Tw unlinks the next
version from the object (line 58). Thus Tr is able to get the
next version updated by Tw. Because the TSO architecture
does not reorder the updates/reads on endTS and inCritical

in TM_COMMIT/TM_READ, thus if Tr finds Tw’s inCriti-

cal is false then it must be able to observe Tw’s endTS. As a

4The detail proof of the consistency between the next copy and its writer

pointer can be found in [1].



result, Tw’s end TS should be equal to TSx 2). Tr reads x after
Tw writes back and unlinks the next copy. For this case, Tr

will read the version committed by Tw or the transaction ac-
cessing x after TSw. Then, we can have TSx that must be less
than Tw’s end TS by simply deriving from Theorem 1.

3.4 Crash Consistency

A recovery procedure will start after a crash and redo the
durable transactions in a non-decreasing order of their logs’
persistTS. The recovery time is affected by the length of the
log which is decided by the log recycling frequency. By de-
fault, each execution thread in Pisces tries to recycle the logs
after executing 3 (the default threshold) read-write transac-
tions, so Pisces does not suffer from a high recovery cost.
Also, Pisces provides a persistent allocator based on SSMal-
loc [50], which can recover the allocation information.

The key to ensuring crash consistency is that dependent

transactions are (i) persisted and (ii) redone (after a crash) in
the correct order that corresponds to their commit order. Two
transactions are dependent if the read set or write set of the
subsequent one overlaps with the write set of the previous
one. In this subsection, we explain how Pisces achieves both
(i) and (ii).

Achieving (i): Pisces guarantees the persistence ordering
of dependent transactions by deferring the visibility of the
updates of a transaction. Specifically, a transaction reaches
its durable point (the end of persist stage) before it is visible
(the end of concurrency commit stage). If transaction B ob-
serves (depends on) transaction A’ updates (visible), A must
already be persisted (durable). So, the persistence ordering of
two dependent transactions must correspond to their commit
order, as shown in Figure 5.

<persistTS endTS endTS<< persistTS

A.persist A.visible B observes A B.persist B.visible

Fig. 5: Transaction B depends on A. Arrows mean happen-before.

Achieving (ii): On one hand, Pisces guarantees that if a
transaction B depends on another transaction A, B’s persist
timestamp must be greater than A’s (see Figure 5). On the
other hand, Pisces’s recovery procedure redoes the transac-
tions’ logs in a non-decreasing order of their persist times-
tamps after a crash. Therefore, transaction B that depends
on A will be redone after A, which also corresponds to their
commit order (B’s endTS is greater than A’s.) Besides, in-
dependent transactions that have the same persist timestamp
can be redone in any order.

4 Optimizations

Flush-diff. Creating redo logs in the granularity of whole ob-
jects can avoid searching for new values in the address-value
pairs. But it is quite expensive when the modification to an
object is much smaller than the object size because the whole
log (entire copy) has to be persisted into NVM. Therefore,

we give an optimization named flush-diff that only persists
the modifications. A transaction creates the object copies
in DRAM instead of NVM and only records the updates
(address-value pairs) in NVM. In the first commit stage, a
transaction only needs to flush those updates into NVM; In
the second commit stage, it lets the in-DRAM object copies
(new versions) become readable; In the third commit stage,
it only needs to apply the logged updates to the original ob-
jects in the NVM. Therefore, flush-diff can still embrace the
advantage of logging a whole object (i.e., directly read/write
the copy without the overhead of indirection) by keeping the
volatile object copy in DRAM, and significantly reduce the
amount of NVM persistence operations.

It is worth mentioning that DRAM footprint in Pisces is
limited and not related to the amount of NVM in use. This is
because Pisces only temporarily buffers the new object ver-
sions in DRAM and timely recycles the transactions’ logs.
Therefore, the DRAM needed for flush-diff is only related to
the working set size of the transactions whose newly created
copies may still be referenced.
Group Commit. Pisces chooses to eagerly write a new ver-
sion back to an object’s home location, which is for benefit-
ing readers but makes the last commit stage for write transac-
tions heavier. As mentioned in Section 3.1, a read-write trans-
action uses the RCU-like waiting mechanism to overwrite
the objects in the home location. Besides, it is also costly to
update globalTS with atomic instruction like fetch_and_add

in a high-contention workload.
To amortize the overhead of both RCU reclamation and

updating globalTS, Pisces batches and commits several write
transactions together. An execution thread delays the com-
mitment of a write transaction till the number of pending
transactions (wait for commit) reaches a threshold or another
transaction needs to update the same object with T. Then, the
thread commits the pending transactions together, i.e., exe-
cute RCU mechanism and update the globalTS for one time.
Thus, the overhead is amortized by these transactions.

5 Evaluation

5.1 Experimental Setup

Basic Setup. We conduct the experiments on a server pro-
vided by Intel. The server has two sockets, each containing
a 10-core Intel Xeon Gold 5215M CPU, 128GB DRAM and
128GB Intel Optane DC Persistent Memory (NVM). We en-
able hyper-threading and bind each software thread to each
hyper-thread (40 hyper-threads in all) that runs at 2.5GHz.
The Linux kernel version is 4.19.32, and the GCC version is
8.3.1. Without an explicit statement, we use clwb instructions
to persist data into NVM.

System for Comparison. DUDETM [49] maps persistent
data in NVM to DRAM and uses TinySTM [35] which is a
word-based STM to execute transactions in DRAM. A trans-
action only needs to write logs in a per-thread volatile log



buffer, and the background persist threads flush these volatile
logs into persistent log buffer. DUDETM also requires an-
other reproduce thread to write logs back to the persistent
data. When evaluating DUDETM, we set the size of pre-
allocated DRAM area the same as pre-allocated NVM area
to make it able to cache all the NVM data in DRAM, which
avoids the potential high overhead of page swapping. The
volatile log buffer for each thread can hold 1 million log en-
tries (default configuration), and we double the default size of
persistent log buffer to make it able to hold 32 million log en-
tries. In all the experiments for DUDETM, we wait for only
foreground threads and not for background threads to finish.
Thus, the committed transaction may be not durable yet. Be-
sides, the background threads are not counted into the thread
number. Currently, DUDETM does not implement multiple
background persistent threads, but the support can be added
without changing its design. However, the background repro-
duce thread needs to replay transactions’ logs according to
the unique transaction ID, i.e., a total order (hard to utilize
multi-threading), which will become the bottleneck in some
scenarios. To avoid the single persist thread becoming the
bottleneck in the experiments, we allocate the persistent log
buffer (should be in NVM actually) in DRAM.

Benchmarks. Generally speaking, to develop SI-safe appli-
cations, programmers need to analyze whether write skew
anomalies may happen in some cases and then avoid the
potential anomalies through making write-write conflicts in
such cases. We manually ensure the presented benchmarks
are SI-safe. referring to [48, 53, 54]. For examples, a transac-
tion on a linked list (used in the following hash tables) adds
all the modified nodes including the nodes to be removed into
its write set in which each node object will be locked before
updated; a transaction on the following tree structures tra-
verses from the root node to some node in one way and also
adds all the to-be-modified nodes into its write set.

5.2 Micro-benchmarks

Hash Table. Each hash table contains 10K buckets (imple-
mented as linked lists) and initially contains 100K key-value
pairs. We create different numbers of threads to execute
search and insert/remove transactions. Figure 6 presents the
evaluation results with various update rates. Note that the y-
axis uses log-scale. Every test runs 30 seconds.

When the update rate is low, such as 0% and 2%, both
Pisces and DUDETM scale well. Although Pisces’s read-
only transactions may load data from NVM when the data
does not reside in CPU cache, they are still faster than that in
DUDETM. It is because DUDETM requires a software page
table mechanism for translating NVM addresses to DRAM
addresses and validation for read operations. Different from
DUDETM which incurs software overhead for read opera-
tions, Pisces embraces a read-friendly design, and thus its
throughput is much higher and grows faster.

When the update rate is 20%, Pisces still scales well within
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Fig. 6: The throughput of hash table (8-byte key and 64-byte value)
at various update rates (legends in the first figure).

20 threads, i.e., a single NUMA (non-uniform memory ac-
cess) node. The throughput of Pisces increases from ∼1.9
Mops/s to ∼26 Mops/s when the thread number increases
from 1 to 20. However, there is an obvious performance
drop when the thread number changes from 20 to 22. The
main cause is cross-NUMA memory accesses. First, a global
timestamp is updated in read-write transactions in Pisces,
and a large number of read-write transactions incur high con-
tention on that timestamp. Second, the grace period detec-
tion is another overhead for the read-write transactions, and
its cost can be enlarged by frequent remote memory accesses.
Recall that Pisces uses the RCU/RLU grace period detection
mechanism (line 52-54 in Algorithm 1) to avoid overwriting
in-use objects’ versions. Therefore, while the total through-
put of Pisces still grows as the thread number increases from
22 to 40, the growth speed is much slower than that within a
single NUMA node.

The throughput of DUDETM grows from ∼1.5 Mops/s
to ∼15 Mops/s as the thread number increases from 1 to
16. However, DUDETM’s throughput cannot keep growing
or even decreases a little when the thread number becomes
larger. The reason is that the background threads fails to
timely clean up the logs of transactions. Note that the repro-
duce thread has to modify the persistent objects according
to the logs in the order of transaction execution, and make
the modifications persistent with cacheline flush instructions.
In contrast, Pisces lets each execution thread to persist and
write-back the transactions’ logs, which can better utilize the
NVM write bandwidth.

Table 1: The average cost of a read-write transaction and one grace
period detection in Pisces’s hash table. The update rate is 40%.

#Thread 10 20 30 40
RW TX Latency (cycles) 2902 3986 7180 8496

Grace Period (cycles) 357 790 1689 2140

The performance of DUDETM and Pisces at 40% update
rate shows similar trends with those at 20% update rate. Nev-
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Fig. 7: The throughput of B+-tree whose node size is 256 bytes with
various update rates (legends in the last figure).

ertheless, the throughput of DUDETM only grows within 8
threads because a higher update rate means more read-write
transactions (generate more logs and fill the log buffer ear-
lier). For Pisces, the growth speed of throughput becomes
lower when the thread number exceeds 20. As presented in
Table 1, the cost of grace period increases as the thread num-
ber increases. The reason is one thread has to check other
threads’ status for detecting the grace period.

In the case of 40 threads, Pisces’s throughput is about
1.8× and 2.7× of DUDETM’s when the update rate is 20%
and 40%, respectively. And, its persistency cost is 19% at
40% update rate. Besides, the abort rates of both Pisces and
DUDETM (if no blocking) are nearly zero since the hashing
mitigates the contention among different threads. However,
DUDETM’s abort rate increases (up to 9%) if blocking hap-
pens because a thread may get blocked with holding locks.

We also evaluate the hash table with an occupancy of 0.75,
i.e., 10K buckets and 7.5K key-value pairs. The evaluation
results show similar trends. Specifically, at 20% update ra-
tio, the throughput of DUDETM grows from ∼3.3 Mops/s to
∼15.9 Mops/s as the thread number increases from 1 to 16.
As before, its throughput cannot grow when the thread num-
ber is larger than 16. Pisces’s throughput grows from ∼2.7
Mops/s to ∼35.9 Mops/s as the thread number increases
from 1 to 20. Nevertheless, when the thread number is 1 or
2, DUDETM has a higher throughput than Pisces for two
reasons: first, DUDETM leverages extra CPUs (background
threads) for persisting data; second, each transaction reads
fewer data due to lower occupancy, which mitigates the ben-
efits of read-friendly design in Pisces.

B+-tree. We construct B+-trees in which each node contains
at most 16 children and randomly insert about 1 million key-
value pairs at the beginning of each test. Figure 7 shows the
evaluation results of executing search and insert transactions
(an insert transaction will modify the target key-value pair if
the pair already exists) on B+-trees. Each transaction goes
down from the root node to some leaf node. For an insert

transaction, before going down to some node, it first checks
if the node is full. If the node is full, it splits the node for
creating space. Since we only implement delete operations
as marking the target node as deleted, we run every test for
10 seconds in case the trees get too large.

Similar to the results of hash table benchmark, both Pisces
and DUDETM can scale well to 40 threads when the up-
date rate is low such as 0% and 2%, because the number of
NVM writes is small. Owing to the read-friendly designs,
Pisces shows a better performance than DUDETM. Never-
theless, the performance gap between Pisces and DUDETM
decreases when the update rate changes from 0% to 2% be-
cause Pisces synchronously persists data into NVM while
DUDETM hides the persistence overhead through asyn-
chronously persisting the data in the background.

At 20% update rate, DUDETM’s throughput is almost the
same as Pisces’s when there is a single execution thread.
However, DUDETM can only scale to two threads while
Pisces has much better scalability. The scalability issue of
DUDETM arises earlier in B+-tree benchmark than in hash
table benchmark because the read-write transactions in B+-
tree generates more log and thus burden the reproduce thread
more. Enlarging the size of log buffer can mitigate/hide the
problem to some extent but cannot eliminate/solve this prob-
lem. At 40% update rate, DUDETM actually outperforms
Pisces when the thread number is 1. However, its scalability
issue gets worse because of the higher update rate.

At 40% update rate, DUDTEM’s throughput grows from
763 Kops to 1370 Kops as the thread number increases from
1 to 40. The reason is each execution thread has one volatile
log buffer. Therefore, the total throughput grows a little when
adding more threads (more buffer). Nevertheless, longer run-
ning time will further flatten the throughput.

To clearly show that the reproduce thread blocks the exe-
cution threads and restricts the overall performance, we also
evaluate the performance of DUDETM-ideal in which the
background reproduce thread directly marks the persistent
log area as free without writing back the logs in it to per-
sistent objects in NVM. In fact, DUDETM-ideal emulates
the performance of DUDETM with an infinite persistent log
buffer. As shown in the last sub-figure in Figure 7, DUDETM-

ideal scales very well to 38 threads. The reason for the per-
formance drop in 40 threads is the total thread number (40 ex-
ecution threads together with 2 background threads) exceeds
the hardware thread number (40 hyper-threads). Since the
only difference between DUDETM-ideal with DUDETM is
whether the background reproduce thread really flushes data
to NVM, we can conclude the centralized reproduce thread
severely harms the system’s scalability.

When the update rate is 20% or 40%, the throughput of
Pisces almost keeps growing as the thread number increases
to 40. And, the persistency cost is 36% at 40% update rate.
The NUMA problem in B+-tree is less severe than that in
the hash table since the total throughput is lower in B+-tree



Table 2: The average cost of a read-write transaction and one grace
period detection in Pisces’s B+-tree. The update rate is 40%.

#Thread 10 20 30 40
RW TX Latency (cycles) 9,374 12,024 15,210 16847

Grace Period (cycles) 1,162 2,021 2,915 3528

(less read-write transactions). Nevertheless, the performance
growth speed still becomes slower when the thread number
exceeds 20. Table 2 presents the cost of grace period detec-
tion in Pisces’s B+-tree.

5.3 Real-world Benchmarks
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Fig. 8: (a) TPC-C new-order transactions and (b) TATP.

We also evaluate macro-benchmarks (i.e., TPC-C and
TATP) which are tested in DUDETM. Besides, we fur-
ther evaluate Pisces and DUDETM on kmeans, ssca2, and
vacation which are popular transactional memory bench-
marks [57, 58].

TPC-C. TPC-C is an online transaction processing (OLTP)
benchmark. We implement its new-order transaction [24]
with B+trees whose nodes contain at most 32 children as the
tables. In this experiment, each execution thread works on
its corresponding warehouse and executes new-order transac-
tions (the update rate is 100%). On average, each transaction
involves inserting over 10 new objects into different tables as
well as modifying over 10 existing objects, which generates
much more logs than the transactions in the previous micro-
benchmarks.

Figure 8-(a) gives the evaluation results. Since there
is no conflict among transactions from different execu-
tion threads, the throughput of Pisces continues to grow
with the increase of thread number. There are no transac-
tion aborts in this experiment for Pisces. For fairness, we
also modify the TinySTM used by DUDETM (enlarge the
LOCK_ARRAY_LOG_SIZE) to avoid false sharing of ad-
dress locks and reduce the abort rate in DUDETM to zero.
However, the throughput of DUDETM at 40 threads is only
twice of that at 1 thread.

The evaluation results clearly demonstrate that Pisces
utilizes the NVM bandwidth in a much better way than
DUDETM. A centralized log-reproducing thread can hardly
catch up with the progress of multiple execution threads.
So the execution threads fill the log buffers in DUDETM.
Once the log buffers are full, all the execution threads are
blocked, and then the whole system’s progress relies on the

background log-reproducing thread. Instead of flushing data
to NVM in a centralized way, Pisces lets each thread make
the transactions’ persistent and thus allows more parallelism
in the NVM persistence operations. Since NVM device can
serve the memory operation requests from different CPUs at
the same time, the throughput of Pisces grows from ∼28 Kop-
s/s to ∼252 Kops/s as the thread number increases from 1 to
40. The NVM hardware bandwidth limit is still not reached,
inferred from the growth in throughput.

Compared with DUDETM, Pisces can achieve about 4.6×
speedup when the thread number is 40. And, the persistency
cost is about 50%.

TATP. TATP benchmark [72] is another OLTP application.
We implement three read-only transactions and three read-
write transactions of it. We use the same B+Tree in the TPC-
C experiments as the data structure of tables, set the update
ratio to 18% and initialize the population size to 200,000.

Different from the new-order transactions in TPC-C, the
read-write transactions in TATP are much smaller. For ex-
ample, the update-location transaction that occupies 14% of
the total transactions only update one single existing object.
So, each TATP read-write transaction involves less NVM
writes than TPC-C transactions and even less than the B+-
tree micro-benchmark in which most read-write transactions
insert a new object. Thus, DUDETM can scale to 22 threads.
However, its scalability issue still comes up when the thread
number gets larger.

For Pisces, the throughput grows from ∼0.7 Mops/s to
∼14 Mops/s as the thread number increases from 1 to
40. Pisces’s peak performance is about 64% higher than
DUDETM’s. And, the persistency cost is 26%. The NUMA
issue also appears in this benchmark. The RCU grace period
detection cost is higher if the total throughput of read-write
transactions is higher because of the higher (cross NUMA
nodes) cacheline contention (i.e., checking other thread’s sta-
tus). This is also why the NUMA issue is not obvious in the
TPC-C benchmark. The NUMA issue also leads to a slower
growth speed of the throughput after the thread number ex-
ceeds 20.

TM Applications. Referring to [7], we implement and
evaluate kmeans, ssca2, and vacation in both Pisces and
DUDETM. Currently, we only persist data that are surround-
ed/protected by TM interfaces.

Table 3: The execution time of kmeans (shorter is better).
#Threads 1 2 4 8 16 32

DUDETM (s) 5.5 5.0 3.8 2.6 0.25 0.54
Pisces (s) 3.2 2.4 1.3 0.8 0.7 1.2

Kmeans is a machine learning application and this exper-
iment test it with low contention and medium data set. Ta-
ble 3 shows the execution time. In this benchmark, both
DUDETM and Pisces scale to 16 threads. However, there is a
performance drop for both systems when the thread number



increases from 16 threads to 32 threads, because they both
suffer from high abort rates (84% for DUDETM and 77%
for Pisces). The performance of Pisces is also bottlenecked
by grace periods’ cost which is enlarged by NUMA. It is also
worth mentioning that the foreground threads in DUDETM
get blocked by full volatile logs (slow background threads)
when the thread number is less than 8. As a result, DUDETM
has an obvious performance improve when the thread num-
ber increases from 8 to 16. For the same reason, DUDETM
performs worse than Pisces with no more than 8 threads.
When there are more than 8 threads, DUDETM has better
performance than Pisces because the foreground threads in
DUDETM neither need to persist write transactions nor get
blocked by background threads.

In this benchmark, with the increase of thread number,
foreground threads in DUDETM are less likely to get
blocked by the reproduce thread. The reason is that kmeans

evenly distribute a specific amount of work to the foreground
execution threads and thus each thread executes less transac-
tions when there are more threads. Specifically, to finish this
benchmark, all the threads need to commit 1M transactions
in total and generate 40M log entries. When the thread num-
ber is more than 16, the foreground threads in DUDETM
do not get blocked since each of them has a volatile buffer
with 1M log entries. Nevertheless, when testing with large
data set (10M transactions and 400M log entries), the fore-
ground threads in DUDETM still get blocked when there are
32 threads.

Table 4: The execution time of ssca2 (shorter is better).
#Threads 1 2 4 8 16 32

DUDETM (s) 17.2 13.1 12.0 11.6 9.3 9.3
Pisces (s) 18.8 13.8 8.4 5.4 3.6 3.7

Scalable Synthetic Compact Applications (ssca2) simu-
lates the computation on graphs. Table 4 gives the evalua-
tion result of ssca2 with medium data set (218 nodes). Differ-
ent from kmeans, ssca2 involves a larger number of transac-
tions and DUDETM cannot scale well since the background
reproduce thread cannot timely consume the logs. So for
DUDETM, 32 threads cannot finish this benchmark faster
than 16 threads since the execution threads get blocked. Nev-
ertheless, if evaluating ssca2 benchmark with the small data
set (213 nodes), DUDETM can scale well but the perfor-
mance of Pisces also gets much better.

Pisces scales better than DUDETM in this benchmark.
However, the execution time of Pisces is longer than that
of DUDETM when the thread number is 1 and 2. This is
because foreground threads in DUDETM do not make the
transactions’ updates persistent, and we only calculate the
runtime of the foreground threads. Similar to previous ex-
periments, Pisces suffers from NUMA problem again. Since
the throughput in this benchmark is high (executes ∼11M
transactions in total) and the update rate is 100%, the NUMA

problem is more severe and thus causes the performance to
drop when threads number changes from 16 to 32.

Table 5: The execution time of vacation (shorter is better).
#Threads 1 2 4 8 16 32

DUDETM (s) 10.0 5.2 2.5 1.2 0.8 0.4
Pisces (s) 8.2 4.7 2.7 1.6 0.9 0.6

Vacation is an OLTP system which emulates a travel reser-
vation system. The vacation benchmark has 100% update ra-
tio, and each transaction has bigger read/write sets. We use
hash tables to implement tables in the benchmark. Table 5
shows the evaluation result of this benchmark with medium
data set and low contention.

As shown in Table 5, the execution time of both DUDETM
and Pisces decreases as the thread number increases in this
benchmark. In the case of 1 and 2 threads, Pisces performs
better than DUDETM. The reason is that DUDETM intro-
duces software overhead for the read operations in the trans-
actions. Since the read sets are large, the software overhead
such as read validation is non-negligible. But DUDETM
scales well since this workload (executes 400K transactions
in total) does not cause the full log problem.

Overall, Pisces does not scale as well as DUDETM. As
the benchmark is update-only and the average transaction
latency is long (big transaction), the grace period detection
mechanism in Pisces becomes more time-consuming and
brings high overhead. Hence, with the increase of thread
number, transactions spend more time in the grace period
detection mechanism, which leads to dissatisfactory perfor-
mance. On average, the mechanism costs each transaction
30,433 cycles and 46,070 cycles when the thread number is
16 and 32, respectively. And the average transaction latency
is about 168,000 cycles when there are 32 threads.

5.4 Other Performance Analysis
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Fig. 9: (a) The performance gain break down. (b) The performance
of read-only transactions. Read latency in Pisces with (c) increased
NVM write latency and (d) increased NVM write bandwidth.

Figure 9-(a) shows step-wise performance gain from the



optimizations in Pisces. Flush Diff improves the throughput
of hash table and B+-tree by 52% and by 11%, respectively,
because it effectively reduces the number of NVM writes.
Since a write transaction on a hash table changes a small
portion of the nodes, there is more data that does not need
to be logged and written back. However, a transaction on a
B+-tree usually involves more data modification, especially,
when node splitting is required. So Flush Diff benefits hash
table more in the presented settings. Group Commit (setting
group number as 3) brings a performance gain of 30% for
hash table and 12% for B+-tree, through reducing the num-
ber of grace period detection and fetch_and_add instructions
on the global timestamp. The performance improvement in
hash table is larger for two reasons. First, Pisces has a higher
throughput in the hash table benchmark which means higher
contention on the global timestamp. Second, the grace period
detection in hash table takes a higher percentage of cost in a
write transaction than that in B+-tree. Note that the current
Group Commit implementation will increase the latency of
write transactions. Nevertheless, Pisces can only batch the
write-back stages instead of the whole commit phases to mit-
igate this issue.

Figure 9-(b) compares the average latency of read-
only transactions in micro-benchmarks. Compared with our
MVCC-based design, the DVCC design in Pisces signifi-
cantly reduces the read latency (about 2× faster). The rea-
son is that each read operation in the MVCC-based design
involves locating the version list of an object and traversing
the list, leading to at least one more random memory access
(i.e., read indirection). Compared with DUDETM (needs ad-
dress translation and read validation), Pisces’s read opera-
tions are also faster owing to the read-friendly design. For the
hash table benchmark, the read-only transaction in Pisces is
faster than DUDETM’s by 472 cycles. While for the B+-tree
benchmark, the read-only transaction in Pisces is faster than
DUDETM’s by 605 cycles. This is because a read transaction
in B+-tree contains more read operations.

Different persistent memory technologies may have differ-
ent persistent cost. We further use an NVM emulator which
explicitly add delays to the NVM flush operations accord-
ing to the NVM write latency and bandwidth (similar to
prior work [17, 37, 49, 49]). As shown in Figure 9-(c) and
Figure 9-(d), the average latency5 of read-only transactions,
each of which searches for an element in the corresponding
data structure, is stable with various NVM write latency and
bandwidth. The reason is that Pisces avoids writers block-
ing readers. Although the NVM write latency and bandwidth
affect the latency of write operations in Pisces, the latency
of read-only transactions is insensitive to that of write oper-
ations. Therefore, Pisces produces a stable average latency
of read-only transactions with increased NVM write latency
and bandwidth. Other experiments with different thread num-

5We set the read latency in hash table in the case of zero NVM write
latency to 1. Other results are normalized against it.

bers or different update rates give similar results.

6 Related Work

Compared with most PTM designs (Mnemosyne [74], NV-
Heaps [21], Kamino-Tx [56], and DCT [44]) which reduce
the persistence latency of write transactions through vari-
ous novel techniques but may expose NVM persist overhead
to readers, Pisces focuses on benefiting read operations and
can always hide NVM persist latency from readers. A most
recent PTM named Romulus [23] promises never blocking
read-only transactions through maintaining twin copies of
the durable data. Pisces shares a similar idea to avoid block-
ing read-only transactions and further exploits SI to avoid
blocking any read operation. Romulus instruments loads
and stores to NVM through programming language feature,
which is elegant and can be borrowed to Pisces. Besides,
Romulus chooses a single writer design which can reduce
the average number of fences for write transactions, how-
ever, limits the concurrency of NVM persistence. Some re-
cent studies [42, 60, 71] leverage hardware modifications to
implement efficient PTM systems. NVM is also exploited
by in-memory database systems [27, 43] and new file sys-
tems [31, 32, 80]. Others [5, 37, 40, 41, 47] provide libraries
for applications to utilize NVM.

Transactional Memory (TM) has been well studied [10,
14, 29, 34, 39, 66, 68, 70]. Some studies [36, 73] propose
non-blocking designs and some others also investigate snap-
shot isolation to TM [48, 68], which significantly reduces the
abort rates. But they do not consider crash consistency under
NVM. Matveev et al. [54] propose a novel and lightweight
synchronization mechanism (RLU) for concurrent program-
ming. DVCC in Pisces is inspired by both MVCC and RLU.
Thus, Pisces and RLU share a couple of similarities includ-
ing maintaining two versions and allowing readers to read
the write sets of writers. However, RLU neither provides a
transactional programming semantic (no snapshot isolation)
nor considers NVM (no durability and crash consistency).

7 Summary

This paper presents Pisces, a read-friendly PTM that provides
transactional memory APIs for programming on NVM. With
several techniques such as DVCC and three-stage commit,
Pisces achieves both high throughput and good scalability
while ensuring snapshot isolation and crash consistency.
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