
This paper is included in the Proceedings of the
2018 USENIX Annual Technical Conference (USENIX ATC ’18).

July 11–13, 2018 • Boston, MA, USA

ISBN 978-1-931971-44-7

Open access to the Proceedings of the
2018 USENIX Annual Technical Conference

is sponsored by USENIX.

EPTI: Efficient Defence against Meltdown Attack
for Unpatched VMs

Zhichao Hua, Dong Du, Yubin Xia, Haibo Chen, and Binyu Zang,
Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

https://www.usenix.org/conference/atc18/presentation/hua

EPTI: Efficient Defence against Meltdown Attack for Unpatched VMs

Zhichao Hua, Dong Du, Yubin Xia, Haibo Chen, Binyu Zang

Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University
{huazhichao123,dd nirvana,xiayubin,haibochen,byzang}@sjtu.edu.cn

Abstract
The Meltdown vulnerability, which exploits the inher-

ent out-of-order execution in common processors like
x86, ARM and PowerPC, has shown to break the fun-
damental isolation boundary between user and kernel
space. This has stimulated a non-trivial patch to mod-
ern OS to separate page tables for user space and kernel
space, namely, KPTI (kernel page table isolation). While
this patch stops kernel memory leakages from rouge user
processes, it mandates users to patch their kernels (usu-
ally requiring a reboot), and is currently only available
on the latest versions of OS kernels. Further, it also in-
troduces non-trivial performance overhead due to page
table switching during user/kernel crossings.

In this paper, we present EPTI, an alternative approach
to defending against the Meltdown attack for unpatched
VMs (virtual machines) in cloud, yet with better per-
formance than KPTI. Specifically, instead of using two
guest page tables, we use two EPTs (extended page ta-
bles) to isolate user space and kernel space, and unmap
all the kernel space in user’s EPT to achieve the same
effort of KPTI. The switching of EPTs is done through
a hardware-support feature called EPT switching within
guest VMs without hypervisor involvement. Meanwhile,
EPT switching does not flush TLB since each EPT has
its own TLB, which further reduces the overhead. We
have implemented our design and evaluated it on Intel
Kaby Lake CPU with different versions of Linux kernel.
The results show that EPTI only introduces up to 13%
overhead, which is around 45% less than KPTI.

1 Introduction

The recently discovered Meltdown [16] and Spectre [14]
vulnerabilities allow unauthorized processes to read data
of privileged kernel or other processes, which brings se-
vere security threat especially to cloud platforms. Cur-
rently, Intel has released micro-code patches to fix the

Spectre vulnerability. However, in order to fix the Melt-
down vulnerability, which is much more serious and eas-
ier to exploit, users are required to apply a kernel patch
named KPTI (kernel page table isolation) [30] that uses
two page tables to host kernel and user programs to iso-
late kernel address space from any user process. While
this patch can effectively defend the Meltdown attacks,
it brings three issues, which leaves thousands of millions
of unpatched machines in danger.

First, the patch has to be applied manually by every
user. In cloud environment, although the cloud adminis-
trators can patch the host OS, they cannot directly patch
guest OS running in VMs (virtual machines) since they
are not allowed to do so. For example, Amazon “recom-
mend that customers patch their instance operating sys-
tems to address process-to-process or process-to-kernel
concerns of this issue” [12]. However, many cloud users
are not capable of doing such system maintenance.

Second, the patch may depend on specific versions of
kernel, especially for Linux. Till now, Linux community
just released version 4.15 that contains the patch. The
patch may not work on some early versions of kernel like
4.4 [28]. It is expected to take a long time before the
patch can be applied to all the versions of Linux kernel.

Third, the patch may incur non-trivial performance
slowdown. The KPTI patch makes the kernel and
user process use different page tables, which causes
TLB-flush during the switching between user-mode and
kernel-mode and thus increases the rate of TLB miss.
Prior evaluation results show that for some system-call
intensive workload, the performance penalty may be
high as 30% in VMs [22]; our own experiments con-
firmed such performance slowdown (Section 6).

In this paper, we present an alternative approach to
defending against Meltdown attack for VMs in cloud.
Our approach, namely EPTI, can be applied to unpatched
guest VMs without users’ awareness and can achieve bet-
ter performance than KPTI at the same time. First, in-
stead of using two gPTs (guest page tables) as in KPTI,

USENIX Association 2018 USENIX Annual Technical Conference 255

EPTI uses two EPTs (extended page tables), namely
EPTk and EPTu, to run the kernel and user processes,
correspondingly. The guest kernel and user still share
one gPT, but in user mode, the gPT entries for mapping
kernel address space are set to zero in EPTu, which for-
bids any translation of address within kernel space to mit-
igate the Meltdown attack. Second, we leverage one of
Intel’s hardware features for virtualization, named EPT
switching, to switch the two EPTs within the VM itself
without causing any VMExit. We use binary instrumen-
tation to insert two trampolines at the entrance and exit
of guest kernel to do the EPT switching, which does not
require kernel’s source code and has little (if any) de-
pendence on kernel versions. Third, through a detailed
micro-architectural analysis, we find that EPT switching
can be more efficient than gPT switching. Since each
EPT has its own TLB, when switching the EPTs there
will be no TLB flushing by hardware, which is the main
reason of performance degradation of KPTI. We also
adopt several optimizations to minimize the number of
VMExits to further reduce the overhead. Fourth, EPTI
can be seamlessly deployed in the cloud by combining
with live VM migration [5]: a host can migrate away all
the guest VMs, patch the host hypervisor with EPTI, and
then migrate all the VMs back.

We have implemented EPTI on KVM and use unmod-
ified Ubuntu distribution as guest VM for evaluation. We
conduct a detailed security analysis as well as evalua-
tion to show that our EPTI can achieve the same security
guarantee as KPTI. We also evaluate real-world bench-
marks to measure the performance overhead. The results
show that the average performance overhead on server
applications of EPTI is about 6%, which is 45% lower
than KPTI whose average overhead is 11%.

To summarize, this paper makes the following contri-
butions:

• An EPT-level isolation of kernel’s and user’s
address spaces to defend against Meltdown attack
for unpatched guest VMs.

• Several optimizations to achieve better performance
than the current solution KPTI.

• A prototype of our design on real hardware for
performance and security evaluation.

2 Motivation and Background

2.1 Meltdown Attack and KPTI
The Meltdown vulnerability was published in January
2018, known to affect Intel’s x86 CPU, ARM Cortex-
A75 [16] and some versions of PowerPC processor [11].
Through this attack, a malicious user application can
steal contents of kernel memory in two steps. Step-1:

Kernel

space

User

space

User-mode

Kernel-mode

Kernel-mode User-mode Kernel-mode User-mode

Origin KPTI EPTI

Mapped in both gPT and EPT

Not mapped in gPT

Mapped in gPT, not mapped in EPT

Figure 1: Page table isolation. For a VM, KPTI uses two
gPTs and one EPT, while EPTI uses one gPT (since VM is not
patched) and two EPTs.

to access kernel address A and to leverage its data as an
index to access the cache; step-2: to get the data through
cache covert channel. The key problem here is that the
Step-1 is executed reordered and will be canceled even-
tually, but the cache layout is affected without rollback.
Since the kernel will typically map all the physical mem-
ory within its memory space, the malicious application
can potentially get all of the memory contents.

KPTI (kernel page table isolation) [30] is based on
KAISER (kernel address isolation to have side-channels
efficiently removed) [19], which is proposed to defend
against the Meltdown attack. This patch separates user
space and kernel space page tables entirely, as shown in
Figure 1. The one used by kernel is the same as before,
while the one used by application contains a copy of user
space and a small set of kernel space mapping with only
trampoline code to enter the kernel. Since the data of ker-
nel are no longer mapped in the user space, a malicious
application cannot directly de-reference kernel’s data ad-
dress, and thus cannot issue Meltdown attack. KPTI has
been merged to the mainstream Linux kernel 4.15, which
was released on 28 Jan, 2018. However, the patch still
has problems on previous Linux kernel versions. For
example, it is reported that some Ubuntu user “just got
the Meltdown update to kernel linux-image-4.4.0-108-
generic but this does not boot at all” [28]. Considering
the patch needs to be applied manually by system ad-
ministrators, it may take a long time before most of the
machines getting the patch deployed.

2.2 Overhead of KPTI

KPTI introduces performance overhead since both
entering-kernel and exiting-kernel require additional
page table switching. The switching is done by loading
the CR3 register, which takes around 300 cycles. Mean-
while, since TLB (translation lookaside buffer) will be
flushed during CR3 changing, the performance will fur-
ther be affected due to higher TLB miss rate. There

256 2018 USENIX Annual Technical Conference USENIX Association

+

+

+

hL4 hL3 hL2 hL1

gL4 hL4 hL3 hL2 hL1

hL4 hL3 hL2 hL1

hL4 hL3 hL2 hL1

hL4 hL3 hL2 hL1

gL3

gL2

gL1

hCR3

hCR3

hCR3

hCR3

hCR3

gCR3

+ + + +

+ + + +

+ + +

+ + +

+ + +

EPT-TLB Hit

EPT-TLB Hit

EPT-TLB Hit

EPT-TLB Hit

EPT-TLB Hit

is

is

is

is

is

is

Combined-TLB Hit

CPU

gPT EPT

G
V

A

H
P

A

+

+

+

+

o
ff
s
e
t

o
ff
s
e
t

Figure 2: Process of translating GVA to HPA in an x86-64 guest
VM. The gCR3 of CPU points to gPT and hCR3 points to EPT.

are many reports on evaluations of KPTI’s overhead,
which show that KPTI could lead to significant perfor-
mance cost (up to 30%), particularly in syscall-heavy and
interrupt-heavy workloads [30, 25, 18].

On processors that support PCID (process-context
identifiers) feature, a TLB flush can be avoided and the
performance overhead of KPTI can be reduced. PCID
is a 12-bit tag of page table and is saved as a part of
a TLB entry. For two page tables with different tags,
their TLB entries can co-exist in the CPU and no TLB
flush is needed when switching between the two page
tables. Existing report shows that after enabling PCID,
the overhead of KPTI on PostgreSQL’s read-only test
on Intel Skylake processor reduces from 17-23% to
7-17% [18]. However, Linux does not support PCID
until version 4.14 released on 12 Nov 2017.

2.3 gPT, EPT and TLB
In native environment, PT (page table) is used for trans-
lating virtual address to physical address. In virtualiza-
tion environment, the guest VM (virtual machine), run-
ning in non-root mode, only controls its GVA (guest vir-
tual address) to GPA (guest physical address) mapping
by gPT (guest page table). The hypervisor, running in
root mode, controls each VM’s GPA to HPA (host phys-
ical address) mapping through a hPT (host page table),
which is called EPT (extended page table) on Intel plat-
form 1.

Figure 2 shows the procedure of GVA-to-HPA trans-
lation on an x86-64 machine with 4 level gPT and EPT.
The value of guest CR3 and addresses inside gPT are

1The hPT of AMD is called NPT (nested page table). Since the
Meltdown attack only affects Intel’s processor, we use “EPT” instead
of “hPT” in the rest of the paper.

GPAs, while the value of EPTP and address inside EPT
are HPAs. When CPU walks the gPT, it needs to translate
all the GPA of needed gPT pages to HPA through EPT.

In order to minimize memory footprint during page
walk, the processor has two types of TLB in virtualized
environment: EPT-TLB and combined-TLB. The EPT-
TLB is used for accelerating translation from GPA to
HPA, while the combined-TLB stores entries of trans-
lation from GVA to HPA.

2.4 EPTP Switching with VMFUNC

VMFUNC is an Intel hardware virtualization extension,
which provides VM functions for guest VMs, running in
non-root mode, to directly invoke without VMExit. Cur-
rently, there is only one VM function provided by VM-
FUNC, named “EPTP switching”, which allows software
(either in the kernel mode or user mode) in guest VM to
load a new EPTP (EPT pointer). Guest can only switch
to the EPEP from a list of valid EPTP values configured
by the hypervisor. The EPTP switching is supported on
all Intel CPUs starting from Haswell architecture.

Performance of EPTP switching: We compare the
latency of loading CR3 and EPTP switching. Writing
the same value to the CR3 in guest VM costs around 300
cycles, with PCID enabled. While the “EPTP switching”
takes about 160 cycles (two different EPTP values, but
have the same mappings).

TLB behavior of EPTP switching: We further test
the TLB behavior of EPTP switching and find how CPU
constructs address mapping in TLB for different EPTs.
The operations performed with one EPT will not affect
other EPTs, Table 1 shows test results. In the table, “In-
valid both EPTs’ TLBs then fill EPT-0’s TLB” means
we first invoke invlpg instruction (which is used to flush
TLB) in both EPT-0 and EPT-1, and then access the tar-
get memory in EPT-0. After that, we access the target
memory again in both EPT-0 and EPT-1, and test the ac-
cess latency. The result means that the EPT-0’s is filled
while the EPT-1’s is not. We also test whether invoking
flush TLB operations (write CR3 and invlpg) in one EPT
will influence the other’s TLB or not. We find that both
of them flush other EPT’s TLB.

3 System Overview

EPTI has three goals:

• Goal-1: To achieve the same security level as KPTI.

• Goal-2: To support protection on unpatched VMs
seamlessly.

• Goal-3: To get better performance than KPTI.

USENIX Association 2018 USENIX Annual Technical Conference 257

Table 1: TLB behaviors of different EPTs during VMFUNC.

Action Access again
in EPT-0

Access again
in EPT-1

Conclusion

Invalid both EPTs’ TLBs then fill EPT-0’s TLB 3-5 cycles 120+ cycles Each EPT has its own mapping in TLB.
Fill both EPTs’ TLBs then write CR3 in EPT-0 120+ cycles 120+ cycles Writing CR3 will flush TLB of all EPTs.
Fill both EPTs’ TLBs then invlpg in EPT-0 120+ cycles 120+ cycles invlpg will flush TLB of all EPTs.

We first construct two EPTs for each guest VM: EPTk
for kernel and EPTu for user. The mapping of EPTk is the
same as original EPT (but with different permissions,
which will be introduced later), so that the kernel will
run just as before. When user applications are running,
we need to ensure that they cannot access (even specula-
tively) any data in the kernel address space.

One intuitive way is to remove all the mappings of
HPA of pages used by guest kernel in EPTu, so that all
kernel pages are not mapped when a user process is run-
ning. However, this solution does not work since typi-
cally Linux kernel will map the entire GPA to its GVA
space, which is known as direct mapping, as shown in
Figure 3. It means that we have to remove all of the GPA
mappings from EPT, which will also disable the execu-
tion of user processes.

Instead, we just remap all the gPT’s pages that map
kernel space in EPTu to a zeroed page, as shown in Fig-
ure 3. Thus, once a user process tries to access kernel ad-
dress using its GVA, the GVA will never be translated to
GPA since the CPU cannot find the corresponding map-
ping in gPT (refer to the left part of Figure 2). The secu-
rity guarantee is the same as KPTI (Goal-1).

Next, we need to find a way to switch the EPTs at ap-
propriate points. When a user process traps to kernel, the
processor should immediately switch to EPTk by VM-
FUNC. It also switches to EPTu before the kernel returns
to user process. In Linux kernel, there are limited entry
points and exit points. The entry points can be located
through IDT (interrupt descriptor table) and some spe-
cific MSRs (model-specific registers) 2. The exit points
must contain specific instructions (e.g., sysretq). Thus,
we use binary instrumentation to re-write the kernel code
on-the-fly to insert two pieces of trampoline code at the
entry and exit points, which are mainly used to do the
EPT switching. Leverage this method, EPTI can be used
together with live migration to seamlessly protect a guest
without rebooting it. More details are described in Sec-
tion 4.3 (Goal-2).

In order to unmap the kernel space in EPTu, we need
to track which gPT pages are used for mapping kernel
space, and zero them in EPTu. EPTI tracks the gL3
pages, which are used to translate kernel GVA, and zero
them (details in Section 4). We further present our opti-
mizations in Section 5 to reduce the number of VMExits

2E.g., IA32 LSTAR controls syscall entry.

k
e
rn

e
l
s
p

a
c
e

u
s
e
r

s
p

a
c
e

gPT’s page

GVA GPA HPA

gPT EPT

Direct M
apping

in EPT-k

00000000000000 in EPT-u

Figure 3: The difference of mapping of EPTu and EPTk.

and get better performance (Goal-3).
Challenges: There are still many challenges on secu-

rity and performance in the above design. For example,
since it is allowed for a user process to invoke VMFUNC,
a malicious process may try to switch to EPTk before is-
suing Meltdown attack. We will describe our design with
more details and present solutions to these challenges in
the following text.

4 Design of EPT Isolation

In this section, we introduce the basic design of EPTI.
Firstly, we need to construct the EPTu, which removes
all the kernel address mappings. Then, we introduce the
basic method of how to track kernel gPT pages and add
trampoline code for EPT switching. Finally we construct
the EPTk so that a malicious user cannot switch to it.

4.1 Zeroing gPT for Kernel Space in EPTu

We remove all the GVA-to-GPA mappings of kernel ad-
dress space in user mode by zeroing the gPT pages used
for address translation in EPTu. As shown in Figure 3,
to zero a gPT page, we remap it to a new zeroed physi-
cal page in EPTu. There are 4 page levels (from gL4 to
gL1) in a 64-bit Linux kernel which uses 48-bit virtual
address. Since each process has different gL4 pages , to
minimize the modification to EPTu, we only zero the gL3
pages used for kernel address translation (gPT structure
is shown in Figure 5).

258 2018 USENIX Annual Technical Conference USENIX Association

After zeroing the gL3 pages for kernel space in EPTu,
accessing kernel memory from user mode will trigger a
guest page fault since the target GVA is not mapped (al-
though Meltdown attack can bypass permission check, it
cannot access non-mapped pages). Since the kernel runs
in EPTk, it can never fill the zeroed gL3 page in EPTu
and the attacker’s user process can never access the ker-
nel memory (even speculatively).

4.2 Tracking gPT Pages in EPTk

In order to zero all the gL3 pages that map kernel space in
EPTu, EPTI first needs to track all the gL3 pages for the
kernel. Specifically, by setting the CR3 LOAD EXITING
bit in VMCS (virtual machine control structure), when a
guest kernel changes CR3 it will trap to the hypervisor,
which will then walk through the gPT to get a list of all
gL3 pages for kernel space mapping. Meanwhile, the
guest kernel may allocate new gL3 pages and add them
to gL4. In order to track new kernel gL3 pages, all the
gL4 pages will be mapped as read-only in EPTk, so that
each time a guest kernel adds a new gL3 page to gL4, it
will trap to the hypervisor to update the monitored gL3
page list. We will present some optimization of tracking
in Section 5.

4.3 Trampoline for EPT Switching

Listing 1 EPT switching to EPTk

1: SWITCH_EPT_K:

2: SAVE_RAX_RCX

3: movq $0, %rax

4: movq $0, %rcx

5: vmfunc

6: RESTORE_RAX_RCX

The trampoline code contains instructions for EPT
switching. Listing 1 shows the assembly code for switch-
ing from EPTu to EPTk. The %rax and %rcx contain the
VMFUNC index and arguments passed to the VMFUNC.
Line 3 means to call the first VMFUNC function (EPTP
switching, index 0), and line 4 means to switch to EPT-0.
Both %rax and %rcx are caller-saved, so the values need
to be saved and restored in the trampoline. The process
of SWITCH EPT U is similar but in the other direction.

Since the trampoline code is used to switch between
EPTk and EPTu, it needs to be invoked in both EPTs. We
need to ensure that: (1) the trampoline is executable in
both EPTs and (2) there is a suitable place to store the
caller-saved registers.

Mapping trampoline as executable in both EPTs:
In EPTu, only one page with the trampoline code will
be mapped in the kernel space. To ensure that, EPTI
remaps all the gPT pages (except gL4), which are used to

translate the GVA for the trampoline, to new host phys-
ical pages. Then all the entries of these pages are set
to zero, except those that used for mapping the trampo-
line (as shown in Figure 4). Entries of the guest IDT and
the syscall entry MSR (IA32 LSTAR) will be changed to
point to the trampoline code. In EPTk, EPTI inserts the
trampoline code to the end of direct map region of guest
kernel, and re-writes the binary of kernel to change the
exit points to jmp instructions that transfer control to the
trampoline.

Saving caller-saved registers: Since VMFUNC will
not save any register by hardware (which makes it fast),
the trampoline code cannot use any register before saving
them. One challenge to save these caller-saved registers
is to support multi-core. For single CPU core, the value
of %rax and %rcx can be saved to a memory page with
a fixed address. However, for multi-core, one core may
overwrite the saved register values of another core since
they write to the same address.

Linux solves this problem by using gs-based per cpu
value. During system boot, it allocates a per cpu memory
region for each core. The base addresses of these regions
will be recorded through gs registers of different cores
after entering the kernel (through swapgs instruction) 3.
The following access of per cpu values is performed by
%gs:index. EPTI cannot leverage this method because:
(1) it needs to know some specific semantics of the ker-
nel and (2) it needs to map kernel’s per cpu region into
EPTu.

EPTI provides a per vCPU memory page to save and
restore the caller-saved registers. Specifically, a mem-
ory page is mapped into the kernel space in both EPTu
and EPTk. To enable concurrent accesses from multi-
ple cores, the page will be mapped to different physical
pages for different vCPUs, so that when one vCPU saves
%rax and %rcx, the values are written to its own page. In
our implementation, we modify gPT to map this page to
an unused GPA (e.g., the GPA out of the guest’s DRAM
range). In the EPTs for different vCPUs, we map this
GPA to different HPA. In both EPTk and EPTu of one
vCPU, it is mapped to the same HPA.

Seamless protection: Combined with live migration,
EPTI can seamlessly protect a guest VM without reboot-
ing it. The cloud provider can migrate away all the VMs,
update the host hypervisor to enable EPTI and migrate all
the VMs back. To resume a VM on EPTI, we need to: (1)
map the trampoline into the guest; (2) rewrite the entries
for interrupts and syscalls (stored in IDT and MSR), as
well as the exit points (contain specific instructions e.g.,
sysretq), to jump to the trampoline; (3) enable the trap-
ping of gPT and guest EPTP switching.

3The swapgs instruction exchanges the current gs value with the
value stored in MSR KERNELGSbase.

USENIX Association 2018 USENIX Annual Technical Conference 259

00000000

00000000

00000000

00000000

00000000

gL4 gL3 gL2 gL1 Trampoline page

VMFUNC
 ……

VMFUNC
 ……

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

Reg-saving page

%rax

%rcx

Figure 4: Contents of kernel space of EPTu, which includes
trampoline code page, register saving page, and gPT for map-
ping these two pages.

4.4 Malicious EPT Switching
The above design relies on an assumption that only the
kernel can switch EPT. Unfortunately, the VMFUNC in-
struction can be invoked in either guest kernel mode
or guest user mode, which enables an attacker to mali-
ciously switch to EPTk by VMFUNC, issue Meltdown
attack and switch back to EPTu. To defend this attack,
EPTI needs to make EPTk useless for the user process.

By performing real Meltdown attacks, we find that al-
though Meltdown can read the memory without access
permission, it cannot fetch code without executable per-
mission even in reorder-execution. Base on this observa-
tion, we map all user memory as execute-never in EPTk.
Thus, once the user maliciously switches to EPTk, all its
code will be non-executable.

Specifically, EPTI only maps the guest physical mem-
ory (including kernel’s code and kernel modules) as ex-
ecutable in EPTk, and all other guest physical memory
is mapped as execute-never. The kernel code is loaded
during system booting and will not be changed during
execution, EPTI can detect all the corresponding GPAs
by searching gPT. The kernel modules are loaded/re-
moved dynamically during runtime, EPTI needs to mon-
itor all the guest physical pages used for them. This
is done by trapping all write operations on gPT pages
which translates GVA-to-GPA mapping of kernel mod-
ules. Since Linux kernel reserves a fixed GVA region
for kernel modules, trapping modifications to the corre-
sponding gPT pages will only influence the performance
of installing/removing kernel modules.

5 Optimizations

As mentioned in the previous section, EPTI needs to trap
both the load-CR3 operation and the write-gL4 in guest
VMs. These trapping methods have three performance
problems:

• Useless traps of load-CR3: EPTI traps guest VM’s

load-CR3 operations for getting all the gPTs. In
fact, EPTI only needs to trap the new gPTs, but
most of the load-CR3 operations just load old gPTs,
which causes a lot of useless VMExits.

• Access/Dirty bits update: To trap the modification
of a gPT page, EPTI marks it as read-only in EPTk.
However, for each memory access (including read,
write and fetch), the CPU will update the A/D bits
(access/dirty bits) in the gPT entries which are used
for translating the target GVA, even when the A/D
bits are already set by previous operations. Thus,
whenever the kernel accesses any of its data, it
will trigger an EPT violation, which causes a huge
number of VMExit.

• Additional traps of write-gPT: In Section 4.2,
EPTI traps all write-gL4 operations to track all
enabled gL3 for kernel space mapping. However,
each process has one gL4 page, which means EPTI
needs to trap thousands of gL4 pages. Since kernel
address mappings are the same for each process,
trapping all these gL4 can be optimized.

In this section, we give several optimizations to solve
all these performance problems.

5.1 Selectively Tracking Guest CR3
EPTI leverages a hardware feature to reduce the number
of VMExit caused by trapping loading old CR3. Intel
provides four CR3 TARGET VALUE fields in VMCS. A
load-CR3 in guest does not cause a VMExit if its source
operand matches one of these values. We write the CR3
value, which 1) causes more than threshold A VMExits
per second or 2) totally causes more than threshold B
VMExits, to the CR3 TARGET VALUE (A and B can be
configured by the VMM).

5.2 Setting gPT Access/Dirty-Bit
In order to eliminate VMExit when CPU setting A/D-bit,
we need to allow CPU to write gPT while disallowing
kernel to do so. We find that the access path of them are
different: the kernel writes gPT through its GVA (using
both gPT and EPT), while the CPU writes gPT through
its GPA (using EPT only). Thus, EPTI maps gPT pages
with write permission in the EPT to allow CPU updat-
ing the A/D bits. To trap kernel modifying a gPT page,
we redirect the GVA of this page to a new GPA which is
mapped as read-only in EPTk. This is done by (1) modi-
fying the gL1 entry that is used for GVA-to-GPA transla-
tion of the target gPT page and remapping the gPT page
to a new GPA; (2) mapping the new GPA to the original
HPA as read-only, which contains the target gPT page.
Thus, only the write access to the gPT page from kernel
will trigger a VMExit.

260 2018 USENIX Annual Technical Conference USENIX Association

…

…

…

gL4 gL3 gL2 gL1

k
e
rn

e
l

u
s
e
r

k
e
rn

e
l

u
s
e
r

k
e
rn

e
l

u
s
e
r

Figure 5: gPT of Linux. The kernel gL3 entries are shared by
different gPTs.

5.3 Trapping gL3 Pages Instead of gL4
We adopt another optimization according to the follow-
ing observations:

• Most kernel virtual address regions are never
changed. Linux kernel reserve memory regions for
different usages 4, and it never changes the mapping
of most of these regions (e.g., direct map region is
never changed).

• Each gL3 pages can translate a large virtual space
(512GB). In a guest, it is almost impossible for the
kernel to allocate so much virtual memory, so the
number of kernel gL3 pages is rarely changed.

• In Linux kernel implementation, kernel only creates
a new gL3 page when all entries of existing gL3
pages are in use, or the continuous free entries are
not enough.

Based on the above observations, EPTI directly traps
the modification of gL3 pages for kernel by default.
When the last entry of a gL3 is used, which means the
kernel may allocate a new gL3 page later, EPTI starts to
trap the load-CR3 and write-gL4 until a new gL3 page is
allocated. With this optimization, EPTI almost does not
need to trap the operations of load-CR3 and write-gL4,
which will reduce most (if not all) of VMExits.

6 Evaluation

In the evaluation, we try to answer these seven questions:
4e.g., In Linux with 48-bit VA, range from 0xffff880000000000

to 0xffffc7ffffffffff is used for direct map, and range from
ffffc90000000000 to ffffe8ffffffffff is used for vmalloc and ioremap.

• Question-1: Can EPTI prevent Meltdown attacks?

• Question-2: How EPTI influences the performance of
kernel critical operations (e.g., syscalls)?

• Question-3: How EPTI influences the performance of
real server applications?

• Question-4: How EPTI influences the performance of
multiple guest VMs?

• Question-5: How many VMExits are reduced by different
optimizations of EPTI?

• Question-6: Can EPTI work on different kernel versions
and how about the performance?

• Question-7: Can a guest VM be live migrated to hyper-
visor with EPTI and what is the performance?

6.1 Evaluation Environment
We do the evaluation on an x86-64 machine with an 8-
core Intel Core i7-7700 CPU, 16GB memory and a Sam-
sung 512GB SSD. We implemented EPTI with KVM
based on Linux kernel 4.9.75 running in Ubuntu 14.04.
We assigned 4 vCPUs (virtual CPUs) and 8GB memory
to the guest VM, which runs an Ubuntu 16.04. The Linux
kernel 4.9.75 is used as the guest kernel by default. In
Section 6.4, we also test the overhead of multiple guest
VMs. In Section 6.6, we test various kernel versions in
the guest VM.

We isolate four physical cores on the host and each
vCPU of the guest is pinned to a physical core. We
use virtio to virtualize guest disk. During the evaluation,
all the clients and server applications are running in the
guest VM to reduce the influence of network.

In the performance evaluation, we test five systems:
“Linux” (without KPTI), “KPTI” and EPTI with differ-
ent optimizations, in which “EPTI-No” means EPTI with
A/D bits updating, “EPTI-CR3” means applying A/D-bit
updating and CR3 TARGET VALUE to reduce VMExit
caused by frequently loaded CR3, and “EPTI-CR3+L3”
means applying all three optimizations.

6.2 Security Evaluation
First we implemented a PoC (proof of concept) of Melt-
down attack, which has three steps: step-1: reads secret
S from kernel address; step-2: uses S as an index to ac-
cess memory (covert channel); and step-3: probes the
cache and gets the value of S. The PoC also registers a
signal handler of the segmentation fault to continuously
perform the attack.

We use this PoC to steal linux proc banner, a value
stored in kernel space (the PoC can also steal any other
data in the kernel address space). It succeeds on Linux
without KPTI, but is failed when using KPTI and EPTI.
We then insert a VMFUNC in the PoC to make it switch
to EPTk just before step-1. The attack does not work

USENIX Association 2018 USENIX Annual Technical Conference 261

Table 2: Evaluation results of LMBench, in µs.

Operation Linux KPTI EPTI-
No

EPTI-
CR3

EPTI-
CR3+L3

Null syscall 0.04 0.16 0.12 0.12 0.12
Null I/O 0.07 0.2 0.17 0.17 0.16
Open/Close 0.70 0.93 0.84 0.84 0.83
Signal Handle 0.68 0.81 0.76 0.76 0.76
Fork syscall 72.9 79 80 80 75
Exec syscall 212 243 242 234 221
ctsw 16P/64K 6.07 7.37 7.66 7.66 6.39

on EPTI due to the defense mentioned in Section 4.4.
We also try to pass a constant value through the covert
channel after switching to EPTk, which also fails.

The security evaluation shows that our system can suc-
cessfully defend against existing Meltdown attacks, even
if a malicious process switches to EPTk first. Actually,
a user process cannot execute any code in EPTk. Log-
ically, both EPTI and KPTI isolate the address space of
user and kernel mode, so both of them can defend against
Meltdown attacks.

6.3 Micro Benchmark

LMBench [21]: To answer Question-2, we use LM-
Bench to test the time of some critical operations, e.g.,
syscall like fork and exec. As shown in Table 2, the null
syscalls of unmodified Linux and KPTI take 0.04µs and
0.16µs, respectively. For EPTI, the time is about 0.12µs,
which is smaller than KPTI due to the benefit of no-
TLB-flushing of VMFUNC. The Null I/O, Open/Close
and Signal Handle have the similar results as the null
syscall. In all cases, EPTI performs better than KPTI.
There is no difference between EPTI with different opti-
mizations, because these operations do not involve load-
CR3 or write-gL4.

For other three operations (fork, exec and context
switch), EPTI-No and EPTI-CR3 take more time than
EPTI-CR3+L3 because these operations contain many
load-CR3 and write-gL4 operations. In LMBench, the
EPTI-CR3 (optimized with CR3 TARGET VALUE) has
the same result with EPTI-No since a process is termi-
nated before being identified as trapping frequently. The
result of LMBench shows that both EPTI and KPTI have
overhead on single critical operation, and the overhead
of EPTI is smaller than KPTI.

SPEC CPU 2006 [8]: We evaluate all of SPEC CPU
2006 INT applications under five systems. As shown in
Figure 6 (a), there is almost no overhead in both KPTI
and EPTI, since these CPU-related applications rarely in-
teract with the kernel.

6.4 Application Benchmark

To answer that how EPTI influences the performance of
server applications (Question-3), we evaluate the perfor-
mance overhead of file system operations, databases and
web servers.

Fs mark [27] is used for evaluating file system per-
formance. We configure it to continuously create 1MB
files in the guest VM and use synchronization method
1 (call fsync before close a file), with different number
of threads (each thread create 1000 files). The result is
shown in Figure 7 (a), the KPTI has 6.5% overhead in
single thread while our system has 1.1%. The overhead
of both EPTI and KPTI are small because of the slow
disk I/O performance for the guest.

Redis [24] is used for evaluating key-value store work-
loads. We use the standard redis-benchmark to test the
throughput of SET and GET operation of Redis. The
redis-benchmark is configured to use different numbers
of threads (from 1 to 8) and the Redis runs with default
configuration. Figure 7 (b) shows the result. The X-axis
means the test operation and the number of threads used
by the client (e.g., SET-1 means SET operation with one
thread). On the average, KPTI has about 12% of perfor-
mance overhead while EPTI has 6%. In the worst case,
KPTI has more than 20% overhead and our system has
12%.

PostgreSQL [23] is a relational database. We test its
performance with the pgbench (a benchmark provided by
PostgreSQL based on TPC-B). We test the throughput
of read-only and read-write transactions of PostgreSQL
under three different loads: single thread (S): using one
database client; normal (N): opening 4 test threads and
16 database clients; heavy (H): opening 8 test threads
and 64 database clients. The pgbench operates on a small
database table with 1000 records. Each test is performed
on a cleaned table and lasts for 60 seconds. The Post-
greSQL is running with default configuration. The result
is shown in Figure 7 (c). The unit of throughput of RO
transaction is kops and the unit of RW is ops. Both KPTI
and EPTI have small overhead for single thread pgbench.
The overhead increases dramatically in the normal and
heavy loads. In the Heavy-RO test, KPTI has about 12%
overhead while our system has about 4%.

MongoDB [3] is a widely-used non-relational
database. We use YSCB benchmark to test the perfor-
mance of it with different workloads. Each workload is
performed on a table with 10,000 records and we con-
figure YCSB to use 32 test threads. The MongoDB uses
the default configuration. We test all the standard work-
loads of YSCB (from workload-A to workload-F) and
the result is shown in Figure 8 (a). On average, KPTI has
about 7% performance overhead while our system has
about 2%.

262 2018 USENIX Annual Technical Conference USENIX Association

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

p
er

lb
en

ch
b
zi

p
2

g
cc

m
cf

g
o
b
m

k

h
m

m
er

sj
en

g

li
b
q
u
an

tu
m

h
2
6
4
re

f
o
m

n
et

p
p

as
ta

r

x
al

an
ch

b
m

k
sp

ec
ra

n
d

N
o
rm

al
iz

ed
 O

v
er

h
ea

d

Linux

KPTI

EPTI-NO

EPTI-CR3

EPTI-CR3+L3

(a) SPEC CPU INT

3.0

4.0

5.0

6.0

7.0

8.0

1 2 4 8 16

T
h
ro

u
g
h
p
u
t

o
f

A
p
ac

h
e

(k
o
p
s)

Linux

KPTI

EPTI-No

EPTI-CR3

EPTI-CR3+L3

(b) Apache
Figure 6: Figure (a) shows the overhead of all INT applications in SPEC CPU 2006 benchmark, lower the better. Figure (b)
shows the throughput of Apache with different number of clients, higher the better.

 0

 20

 40

 60

 80

 100

 120

1 2 4 8

T
h
ro

u
g
h
p
u
t

o
f

fs
m

ar
k
 (

fi
le

s/
s)

Linux

KPTI

EPTI-CR3+L3

(a) fs mark

 0

 100

 200

 300

 400

 500

 600

 700

 800

SET-1 GET-1 SET-2 GET-2 SET-4 GET-4 SET-8 GET-8

T
h
ro

u
g
h
p
u
t

o
f

R
ed

is
 (

k
o
p
s)

Linux

KPTI

EPTI-CR3+L3

(b) Redis

 0

 50

 100

 150

 200

S-RO S-RW N-RO N-RW H-RO H-RW

R
O

 t
h
ro

u
g
h
p
u
t

o
f

p
o
st

g
re

sq
l

(k
o
p
s)

R
W

 t
h
ro

u
g
h
p
u
t

o
f

p
o
st

g
re

sq
l

(o
p
s)

Linux

KPTI

EPTI-CR3+L3

(c) PostgreSQL

Figure 7: Figure (a) shows the throughput of fs mark with different threads. Figure (b) shows the throughput of SET and GET
operations of Redis with different threads used by the client. Figure (c) shows the throughput of PostgreSQL under different
workloads of RO (read-only) and RW (read-write) transactions. Higher the better.

Apache [1] is a widely-used web server. We use ab
(apache benchmark) to test the throughput of Apache.
It continuously downloads a 1MB static web page from
the Apache, with different client threads (1 to 16). The
Apache server uses default configuration (event mode).
Figure 6 (b) shows the throughput of Apache. The per-
formance drops after 4 client threads since we use 4 vC-
PUs in the VM. The overhead of KPTI is 15%-18%,
while our system (EPTI-CR3+L3) has about 10% over-
head.

Nginx [2] is a lightweight web server. We also test it
by ab benchmark with a 1MB static web page and differ-
ent threads (1 to 16). The Nginx server runs with default
configuration. The throughput of Nginx is shown in Fig-
ure 8 (b). In the worst case, the overhead of KPTI is 18%
and ours is 12%.

Multiple guest VMs: We evaluate the overhead of
EPTI on multiple guest VMs (for Question-4). Each VM
is configured to have 1 vCPU and 1GB memory, and all
the VMs’ vCPUs are pinned on 4 physical cores. We use
linux 4.15 as the guest kernel, and run a Nginx server
as well as an ab benchmark tool in each VM. The result
is shown in Figure 9, the average overhead of KPTI is
about 16% while our system is about 9%

Table 3: Number of VMExit caused by EPTI.

Benchmark EPTI-No EPTI-CR3 EPTI-CR3+L3

Redis 1-thread 540 464 0
Redis 8-thread 385 315 0
Apache 4-thread 45406 225 0
Apache 32-thread 40149 623 0
Compile Kernel -j8 609659 551023 0

6.5 Breakdown of Optimizations

To answer how different optimizations reduce the num-
ber of VMExit of EPTI (Question-5), we test the perfor-
mance of Apache on EPTI with different optimizations.
Figure 6 (b) shows the result. In the best case (1 client
thread), EPTI-No has about 9% performance overhead
which is almost same as KPTI. EPTI-CR3 only has 5%
overhead while EPTI-CR3+L3 has 4%.

To give a detailed breakdown of the performance im-
provement, we analyze the number of VMExits in EPTI
with different optimizations. We calculate the total num-
ber of VMExits caused by EPTI of the whole guest in
three scenarios: (1) running redis-benchmark to test Re-
dis (1,000,000 operations with 1 or 8 threads); (2) run-
ning ab to download 1,000 1MB web pages (with 4 or

USENIX Association 2018 USENIX Annual Technical Conference 263

0.0

5.0

1.0

1.5

2.0

2.5

3.0

YCSB-A YCSB-B YCSB-C YCSB-D YCSB-E YCSB-F

T
h
ro

u
g
h
p
u
t

o
f

M
o
n
g
o
D

B
 (

k
o
p
s)

Linux

KPTI

EPTI-CR3+L3

(a) MongoDB

3.0

4.0

5.0

6.0

7.0

8.0

1 2 4 8 16

T
h
ro

u
g
h
p
u
t

o
f

N
g
in

x
 (

k
o
p
s)

Linux

KPTI

EPTI-CR3+L3

(b) Nginx

3.0

4.0

5.0

6.0

7.0

8.0

4.15 4.9.75 4.4.11 4.0.1 3.4.40 2.6.39T
h
ro

u
g
h
p
u
t

o
f

A
p
ac

h
e

o
n
 d

if
f

k
er

n
el

s
(k

o
p
s)

Linux

KPTI

EPTI-CR3+L3

(c) Apache on different kernel versions

Figure 8: Figure (a) and (b) show the throughput of MongoDB and Nginx, higher the better. For MongoDB, we test it with
YSCB and X-axis means the different YSCB workloads. For Nginx, we test it by using ab benchmark with different threads.
Figure (c) shows the throughput of Apache on different kernel versions, X-axis means the kernel version.

2

4

6

8

10

12

14

16

18

L K E L K E L K E L K E

T
h
ro

u
g
h
p
u
t

(k
o
p
s)

Figure 9: Throughput of Nginx on multiple guest VMs. (L
means Linux, K means KPTI, E means EPTI-CR3+L3)

32 client threads); and (3) compiling Linux kernel 4.9.75
with “defconfig” (including kernel modules, “make -j8”).
The result is shown in Table 3.

As shown in the table, the optimization of selectively
trapping load-CR3 does not have much effect on Re-
dis and kernel compilation, but is effective for Apache.
This is because EPTI-CR3 can only reduce the VMExit
caused by frequently loading CR3 value, while both Re-
dis and redis-benchmark are single-process that have
very few load-CR3 or write-gL4 operations. In kernel
compilation, the Makefile creates a gcc process to com-
pile each C file, which produces a huge number of pro-
cesses with different CR3. Since each gcc process works
for a short time, there is no long-term frequently-used
CR3 which means the EPTI-CR3 cannot effectively re-
duce the number of VMExits (theoretically, the result
of EPTI-CR3 can be improved by a better algorithm
for replacing the value of CR3 TARGET VALUE). On
the contrary, Apache with event mode uses a few (typi-
cally 4) child processes to manage all the worker threads.
Most of the VMExits are caused by loading the CR3 of
Apache’s child process, which can be optimized by stor-
ing their CR3 in CR3 TARGET VALUE.

For all scenarios, there is no modification on kernel
gL3, so the number of VMExit can be further reduced to
0 by EPTI-CR3+L3. The reason we still need both op-

Table 4: VM live migration to host with EPTI, in ms.

KVM w/o EPTI KVM w/ EPTI

Total time 15779.5 ±1112.03 15782.6 ±1111.86
Downtime 6.1 ±0.82 9.2 ±1.03

timizations is that operation on kernel gL3 is highly OS
dependent, while the optimization of selectively trapping
CR3 is more general.

6.6 Different Kernel Versions

To answer Question-6 (could EPTI works on different
kernel versions and how about their performance?), we
test the performance of EPTI on different Linux kernel
versions (selected from 2.6 to 4.15). We run Apache
on them and use ab benchmark with 4 client threads to
evaluate the throughput. The result is shown in Figure 8
(c). Our system has higher performance than KPTI in
all the kernel versions (excluding kernels which do not
have KPTI support). In the newest kernel 4.15, which
enabled PCID, the performance of Linux w/o KPTI is
improved obviously. However the KPTI of Linux 4.15
still has about 17% overhead, while our system has 10%.

6.7 VM Migration

To answer the last question, we test the total time and
downtime of VM live migration, from a host without
EPTI to one with EPTI. The source machine deploys an
unmodified Linux kernel 4.9.75 with the same hardware
configuration as mentioned, and the target is the one we
use in previous evaluation. We use both the unmodified
KVM and KVM with EPTI as the target hypervisor. A
guest VM can be seamlessly migrated to a hypervisor
with EPTI and the overhead is small. Table 4 shows the
average migration time together with the stddev (test for
4 times). The downtime increases 3 ms which is caused
by the scanning of code region in memory, preparing for
two EPTs and binary writing.

264 2018 USENIX Annual Technical Conference USENIX Association

7 Related Work

Besides the work mentioned, we now present the systems
that also leverage similar hardware features for enhanc-
ing system security or performance.

KAISER [19] was proposed to defend against attacks
on KASLR [10, 7, 13], which can also prevent Meltdown
since it ensures no valid mapping to kernel space in user
mode. It is later replaced by KPTI [30] and is merged to
Linux kernel from version 4.15.

SecVisor [26] ensures lifetime kernel integrity via set-
ting access permissions in NPT (Nested Page Table, from
AMD, similar to Intel’s EPT). TrustVisor [20] uses NPT
to isolate memory regions used by a security task. Cloud-
Visor [31] de-privileges the hypervisor to non-root mode
and uses a separated EPT to host it. Thus, the hypervi-
sor is isolated from guest VMs and is removed from the
TCB (trusted computing base). InkTag [9] uses EPT to
isolate the address space of a process. SeCage [17] lever-
ages VMFUNC to provide two isolated execution envi-
ronments, one for running security-critical code and the
other for the normal code, to defend against attacks like
heartbleed [29]. Similarly, MemSentry [15] creates do-
mains (VMs) to hide secret data and uses VMFUNC to
switch between different domains.

8 Discussion

Supporting x86-32: To support 32-bit linux, EPTI needs
two steps, 1) trapping and modifying the gPT and 2) in-
serting the trampoline. The existing design can be used
to trap and construct gPT for 32-bit linux. To add the
trampoline, EPTI requires 8KB virtual address region
within guest VM which should not be occupied by the
VM itself. We could use technology like shadow IDT
of ELI [6], which leverages extra pages of devices PCI
BAR (base address register) in guest VM to insert addi-
tional pages.

Supporting five-level page table: 64-bit Linux also
provides five-level page table (the root gPT is gL5). EPTI
can trap all enabled gL4 pages and zero them in EPTu to
perform the user-kernel isolation. All the trap and zero
methods are same as the four-level page table.

Supporting Windows: Technically, the design of
EPTI can be applied to Windows or other OSes. All
the kernel entries of Windows kernel can be detected by
trapping the modification of IDT and MSRs, so that a
trampoline can further be added. After that, EPTI can
construct the EPTu and EPTk after knowing the virtual
memory layout of Windows kernel.

Transparency to guest VMs: EPTI modifies the
code and gPT of the guest. In current implementation,
these modifications are not transparent to the guest VM.
These modifications will not affect functionalities like

VMI (virtual machine introspection) and kernel integrity
check. For the VMI case, we keep the original address
mapping with only different permission so the address
translation in VMI can be done as before. For the kernel
integrity check case, we do not change existing kernel
code, so that its hash value will not be changed. More-
over, the VMM can make the modifications transparent
to the guest. Features like XnR (execute-no-read) [4] can
be used to prevent kernel from reading the trampoline
code page while still allowing to execute the code, and
the access to the modified gPT pages can also be trapped.

Compared with KPTI: EPTI has three advantages
compared with KPTI: compatibility, performance and
seamless deployment. Even when the KPTI is patched
on all Linux versions, EPTI is still valuable for its low
performance overhead and seamless deployment without
guest rebooting.

9 Conclusion

The publish of Meltdown vulnerability makes public
servers in danger, especially those in cloud. The KPTI
solution requires server owners to apply the patch man-
ually, which currently supports only a few of kernel
versions and may introduce non-negligible performance
overhead. This paper presents EPTI, a new solution to
Meltdown vulnerability that can be applied to unpatched
VMs and with less overhead. Specifically, our solution
uses two EPTs (extended page tables) to isolate user
space and kernel space, and unmaps all the kernel space
in user’s EPT to achieve the same effort of KPTI. EPTI
leverages two hardware features to reduce the perfor-
mance overhead: first, the switching of EPTs is done
through a hardware-support feature called EPTP switch-
ing within guest VMs without hypervisor involvement.
Second, EPTP switching does not flush TLB since each
EPT has its own TLB, which further reduces the over-
head. By leveraging live migration, EPTI can seamlessly
protect a guest VM without rebooting it. We have im-
plemented our design and evaluated on Intel Kaby Lake
CPU with different versions of Linux kernel. The re-
sults show that EPTI only introduces up to 13% over-
head, which is around 45% less than KPTI.

Acknowledgments

This work was supported by the National Key Re-
search and Development Program of China under Grant
No. 2016YFB1000104, the National Natural Science
Foundation of China under Grant Nos. 61572314 and
61525204.

USENIX Association 2018 USENIX Annual Technical Conference 265

References
[1] Apache http server. https://www.apache.org/. Referenced

Feb 2018.

[2] Apache http server. https://nginx.org/cn/. Referenced Feb
2018.

[3] Mongodb. https://www.mongodb.com/. Referenced Feb
2018.

[4] BACKES, M., HOLZ, T., KOLLENDA, B., KOPPE, P.,
NÜRNBERGER, S., AND PEWNY, J. You can run but you can’t
read: Preventing disclosure exploits in executable code. In Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security (2014), ACM, pp. 1342–1353.

[5] CLARK, C., FRASER, K., HAND, S., HANSEN, J. G., JUL, E.,
LIMPACH, C., PRATT, I., AND WARFIELD, A. Live migration of
virtual machines. In Proceedings of the 2nd Conference on Sym-
posium on Networked Systems Design & Implementation-Volume
2 (2005), USENIX Association, pp. 273–286.

[6] GORDON, A., AMIT, N., HAR’EL, N., BEN-YEHUDA, M.,
LANDAU, A., SCHUSTER, A., AND TSAFRIR, D. Eli: bare-
metal performance for i/o virtualization. ACM SIGPLAN Notices
47, 4 (2012), 411–422.

[7] GRUSS, D., MAURICE, C., FOGH, A., LIPP, M., AND MAN-
GARD, S. Prefetch side-channel attacks: Bypassing smap and
kernel aslr. In Proceedings of the 2016 ACM SIGSAC confer-
ence on computer and communications security (2016), ACM,
pp. 368–379.

[8] HENNING, J. L. Spec cpu2006 benchmark descriptions. ACM
SIGARCH Computer Architecture News 34, 4 (2006), 1–17.

[9] HOFMANN, O. S., KIM, S., DUNN, A. M., LEE, M. Z., AND
WITCHEL, E. Inktag: Secure applications on an untrusted op-
erating system. In ACM SIGARCH Computer Architecture News
(2013), vol. 41, ACM, pp. 265–278.

[10] HUND, R., WILLEMS, C., AND HOLZ, T. Practical timing side
channel attacks against kernel space aslr. In Security and Privacy
(SP), 2013 IEEE Symposium on (2013), IEEE, pp. 191–205.

[11] IBM. Potential impact on processors in the power
family. https://www.ibm.com/blogs/psirt/

potential-impact-processors-power-family/. Refer-
enced Jan 2018.

[12] INC., A. Processor speculative execution research dis-
closure. https://aws.amazon.com/cn/security/

security-bulletins/AWS-2018-013/. Referenced Jan
2018.

[13] JANG, Y., LEE, S., AND KIM, T. Breaking kernel address space
layout randomization with intel tsx. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Se-
curity (2016), ACM, pp. 380–392.

[14] KOCHER, P., GENKIN, D., GRUSS, D., HAAS, W., HAMBURG,
M., LIPP, M., MANGARD, S., PRESCHER, T., SCHWARZ, M.,
AND YAROM, Y. Spectre attacks: Exploiting speculative execu-
tion. ArXiv e-prints (Jan. 2018).

[15] KONING, K., CHEN, X., BOS, H., GIUFFRIDA, C., AND
ATHANASOPOULOS, E. No need to hide: Protecting safe regions
on commodity hardware. In Proceedings of the Twelfth European
Conference on Computer Systems (2017), ACM, pp. 437–452.

[16] LIPP, M., SCHWARZ, M., GRUSS, D., PRESCHER, T., HAAS,
W., MANGARD, S., KOCHER, P., GENKIN, D., YAROM, Y.,
AND HAMBURG, M. Meltdown. ArXiv e-prints (Jan. 2018).

[17] LIU, Y., ZHOU, T., CHEN, K., CHEN, H., AND XIA, Y. Thwart-
ing memory disclosure with efficient hypervisor-enforced intra-
domain isolation. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security (2015),
ACM, pp. 1607–1619.

[18] MAILING LIST, P. heads up: Fix for intel hardware
bug will lead to performance regressions. https:

//www.postgresql.org/message-id/20180102222354.

qikjmf7dvnjgbkxe@alap3.anarazel.de. Referenced Jan
2018.

[19] MAURICE, C., AND MANGARD, S. Kaslr is dead: Long live
kaslr. In Engineering Secure Software and Systems: 9th Interna-
tional Symposium, ESSoS 2017, Bonn, Germany, July 3-5, 2017,
Proceedings (2017), vol. 10379, Springer, p. 161.

[20] MCCUNE, J. M., LI, Y., QU, N., ZHOU, Z., DATTA, A.,
GLIGOR, V., AND PERRIG, A. Trustvisor: Efficient tcb reduc-
tion and attestation. In Security and Privacy (SP), 2010 IEEE
Symposium on (2010), IEEE, pp. 143–158.

[21] MCVOY, L. W., STAELIN, C., ET AL. lmbench: Portable tools
for performance analysis. In USENIX annual technical confer-
ence (1996), San Diego, CA, USA, pp. 279–294.

[22] NEWS, H. Kpti overhead of redis. https://news.

ycombinator.com/item?id=16079457. Referenced Jan
2018.

[23] POSTGRESQL. Postgresql database. https://www.

postgresql.org. Referenced Feb 2018.

[24] REDIS. Redis database. https://redis.io. Referenced Feb
2018.

[25] REGISTER, T. Kernel-memory-leaking intel pro-
cessor design flaw forces linux, windows redesign.
https://www.theregister.co.uk/2018/01/02/intel_

cpu_design_flaw/. Referenced Jan 2018.

[26] SESHADRI, A., LUK, M., QU, N., AND PERRIG, A. Secvisor:
A tiny hypervisor to provide lifetime kernel code integrity for
commodity oses. In ACM SIGOPS Operating Systems Review
(2007), vol. 41, ACM, pp. 335–350.

[27] SOURCEFORGE. Fs mark. https://sourceforge.net/p/

fsmark/wiki/Home/. Referenced Feb 2018.

[28] UBUNTU. Meltdown update kernel does not boot.
https://bugs.launchpad.net/ubuntu/+source/linux/

+bug/1742323. Referenced Jan 2018.

[29] WIKIPEDIA. Heartbleed. https://en.wikipedia.org/

wiki/Heartbleed. Referenced Jan 2018.

[30] WIKIPEDIA. Kernel page-table isolation. https://en.

wikipedia.org/wiki/Kernel_page-table_isolation.
Referenced Jan 2018.

[31] ZHANG, F., CHEN, J., CHEN, H., AND ZANG, B. Cloudvisor:
retrofitting protection of virtual machines in multi-tenant cloud
with nested virtualization. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles (2011), ACM,
pp. 203–216.

266 2018 USENIX Annual Technical Conference USENIX Association

https://www.apache.org/
https://nginx.org/cn/
https://www.mongodb.com/
https://www.ibm.com/blogs/psirt/potential-impact-processors-power-family/
https://www.ibm.com/blogs/psirt/potential-impact-processors-power-family/
https://aws.amazon.com/cn/security/security-bulletins/AWS-2018-013/
https://aws.amazon.com/cn/security/security-bulletins/AWS-2018-013/
https://www.postgresql.org/message-id/20180102222354.qikjmf7dvnjgbkxe@alap3.anarazel.de
https://www.postgresql.org/message-id/20180102222354.qikjmf7dvnjgbkxe@alap3.anarazel.de
https://www.postgresql.org/message-id/20180102222354.qikjmf7dvnjgbkxe@alap3.anarazel.de
https://news.ycombinator.com/item?id=16079457
https://news.ycombinator.com/item?id=16079457
https://www.postgresql.org
https://www.postgresql.org
https://redis.io
https://www.theregister.co.uk/2018/01/02/intel_cpu_design_flaw/
https://www.theregister.co.uk/2018/01/02/intel_cpu_design_flaw/
https://sourceforge.net/p/fsmark/wiki/Home/
https://sourceforge.net/p/fsmark/wiki/Home/
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1742323
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1742323
https://en.wikipedia.org/wiki/Heartbleed
https://en.wikipedia.org/wiki/Heartbleed
https://en.wikipedia.org/wiki/Kernel_page-table_isolation
https://en.wikipedia.org/wiki/Kernel_page-table_isolation

	Introduction
	Motivation and Background
	Meltdown Attack and KPTI
	Overhead of KPTI
	gPT, EPT and TLB
	EPTP Switching with VMFUNC

	System Overview
	Design of EPT Isolation
	Zeroing gPT for Kernel Space in EPTu
	Tracking gPT Pages in EPTk
	Trampoline for EPT Switching
	Malicious EPT Switching

	Optimizations
	Selectively Tracking Guest CR3
	Setting gPT Access/Dirty-Bit
	Trapping gL3 Pages Instead of gL4

	Evaluation
	Evaluation Environment
	Security Evaluation
	Micro Benchmark
	Application Benchmark
	Breakdown of Optimizations
	Different Kernel Versions
	VM Migration

	Related Work
	Discussion
	Conclusion

