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Abstract

Recent transaction processing systems attempt to leverage

advanced hardware features like RDMA and HTM to sig-

nificantly boost performance, which, however, pose several

limitations like requiring priori knowledge of read/write sets

of transactions and providing no availability support. In this

paper, we present DrTM+R, a fast in-memory transaction

processing system that retains the performance benefit from

advanced hardware features, while supporting general trans-

actional workloads and high availability through replication.

DrTM+R addresses the generality issue by designing a hy-

brid OCC and locking scheme, which leverages the strong

atomicity of HTM and the strong consistency of RDMA to

preserve strict serializability with high performance. To re-

solve the race condition between the immediate visibility

of records updated by HTM transactions and the unready

replication of such records, DrTM+R leverages an optimistic

replication scheme that uses seqlock-like versioning to dis-

tinguish the visibility of tuples and the readiness of record

replication. Evaluation using typical OLTP workloads like

TPC-C and SmallBank shows that DrTM+R scales well on

a 6-node cluster and achieves over 5.69 and 94 million trans-

actions per second without replication for TPC-C and Small-

Bank respectively. Enabling 3-way replication on DrTM+R

only incurs at most 41% overhead before reaching network

bottleneck, and is still an order-of-magnitude faster than a

state-of-the-art distributed transaction system (Calvin).

1. Introduction

Transaction [18] is a very powerful abstraction that simpli-

fies the processing of relational data. With the increase of

data volume and concurrency level, many systems like Web

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to

lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org or Publications

Dept., ACM, Inc., fax +1 (212) 869-0481.

EuroSys ’16, April 18-21, 2016, London, United Kingdom

Copyright c© 2016 ACM 978-1-4503-4240-7/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2901318.2901349

service, stock exchange, and e-commerce demand the sup-

port of low-latency and high-throughput transaction process-

ing systems. However, traditional systems are usually with

low efficiency such that only a small portion of the wall-

clock time is spent on useful data processing [44].

Recent advanced hardware features like large (non-

volatile) memory, hardware transactional memory (HTM)

and fast interconnect with RDMA pose new opportunities

for fast transaction processing: large memory volume en-

ables a new paradigm of in-memory transactions, which sig-

nificantly reduces buffering and I/O overhead; the hardware

support for atomicity, consistency, and isolation (ACI) prop-

erties makes it very promising to offload concurrency con-

trol to CPU [39, 52]; and the RDMA feature further enables

fast distributed transactions within a local cluster [17, 54].

However, while prior systems have demonstrated the fea-

sibility of combining such advanced hardware features for

fast distributed transactions, they fall short in several aspects.

They either leverage only parts of the features [17, 39, 52],

or place several restrictions on transaction such as knowing

read/write sets in advance and providing no availability sup-

port [54], or both.

This paper presents DrTM+R, a fast and general dis-

tributed transaction processing system. Like prior systems,

DrTM+R supports in-memory transactions by leveraging

battery-backed memory as the main storage for database

records and combines HTM and RDMA for fast distributed

transactions. Unlike prior systems [54], DrTM+R places

no restrictions on transactional workloads and provides full

replication support for high availability.

To address the generality issue, DrTM+R leverages an

opportunistic concurrency control (OCC) design [52] for lo-

cal transactions, while leveraging HTM to protect the vali-

dation and write phases. To glue together distributed trans-

actions across machines, DrTM+R leverages the strong con-

sistency of RDMA to detect the conflict between a remote

(distributed) transaction from local transactions. To prevent

a remote transaction from updating a record in the read set

of a local transaction, DrTM+R additionally introduces a re-

mote locking phase before the validation phase and the write



phase of OCC. As DrTM+R knows all read and write sets of

a transaction after the execution phase, DrTM+R does not

require priori knowledge of read/write sets before transac-

tion execution.

There is a challenge in providing replication for

DrTM+R, due to the fact that no I/O operations such as

RDMA operations are allowed within an HTM transaction.

Hence, DrTM+R cannot replicate local updates within a

transaction to a remote machine, while replicating updates

outside the HTM transaction would cause a race condi-

tion that a transaction is considered as committed but not

replicated. DrTM+R addresses this issue by leveraging an

optimistic replication scheme that decouples local commit

from replication (i.e., full commit). Specifically, it assigns

a version number to each record and uses a seqlock1-like

versioning scheme. DrTM+R increases the version number

into “odd” within the HTM transaction, indicating that the

records are committed but not replicated. It then increases

the records again to “even” after replication outside the HTM

transaction to indicate that the records have been replicated.

An inflight transaction is allowed to read an unreplicated

record but cannot commit until the records have been repli-

cated.

We have implemented DrTM+R, which extends a prior

OCC-based multicore database design [52] with the support

for distributed transactions. To demonstrate the efficiency

of DrTM+R, we have conducted a set of evaluations of

DrTM+R’s performance using a 6-node cluster connected by

InfiniBand NICs with the RDMA feature. Each machine of

the cluster has two 10-core RTM-enabled Intel Xeon proces-

sors. Using popular OLTP workloads like TPC-C [46] and

SmallBank [45], we show that DrTM+R can perform over

5.69 and 94 million transactions per second without repli-

cation for TPC-C and SmallBank respectively. A simulation

of running multiple logical nodes over each machine shows

that DrTM+R may be able to scale out to a larger cluster

with tens of nodes. A comparison with a state-of-the-art dis-

tributed transaction system (i.e., Calvin without replication)

shows that DrTM+R is at least 26.8X faster for TPC-C. We

further show that enabling 3-way replication on DrTM+R

only incurs at most 41% overhead before reaching network

bottleneck.

In summary, the contributions of this paper are:

• The design and implementation of a distributed transac-

tion processing system with the combination of HTM and

RDMA (§3), yet without restrictions in prior work like

knowing read/write sets of transactions in advance.

• An HTM/RDMA friendly concurrency control scheme

using OCC and remote locking to glue together multiple

concurrent transactions across machines (§4).

1 Seqlock, i.e., sequential lock, is special locking scheme used in Linux

kernel that allows fast writes to a shared memory location among multiple

racy accesses.

• An efficient optimistic replication scheme that provides

durability and high availability while retaining the bene-

fits of combining RDMA and HTM (§5).

• A set of evaluations that confirm extremely high perfor-

mance and high availability of DrTM+R with strict seri-

alizability (§7).

2. Background and Motivation

2.1 Advanced Hardware Features

HTM and Strong Atomicity. Hardware transactional mem-

ory (HTM) has recently been commercially available in the

form of Intel’s restricted transactional memory (RTM). The

goal of HTM is to be an alternative of locking, by providing

the simplicity of coarse-grained locking yet having the per-

formance of fine-grained locking. By enclosing a set of op-

erations (including memory operations) as a hardware trans-

action2, the CPU ensures that a set of operations execute

with the properties of atomicity, consistency and isolation

(ACI). Some recent hardware proposals even further propose

adding durability to HTM [53]. Intel RTM provides a set of

interfaces including XBEGIN, XEND, and XABORT, which

will begin, end, and abort an RTM transaction accordingly.

As a hardware supported one, Intel’s RTM provides

strong atomicity [7] within a single machine. This means

that a non-transactional operation will unconditionally abort

an HTM transaction when their accesses conflict. To sim-

plify hardware implementation, RTM uses the first-level

cache to track the write set and an implementation-specific

structure (e.g., a bloom filter) to track the read set. It relies on

the cache coherence protocol to detect conflicts, upon which

at least one transaction will be aborted.

There are also several limitations with Intel’s RTM [51,

52], which prevents a direct use of RTM to protect database

transactions. The first limitation is that an RTM transac-

tion can only track limited read/write sets. Consequently, the

abort rate of an RTM transaction will increase significantly

with the increase of working set size. Thus, running a pro-

gram with a number of memory operations will cause high

abort rate or even no forward progress. The second limita-

tion is that no I/O operations are allowed within an RTM

transaction. This prevents us from running RDMA opera-

tions within an RTM transaction for remote memory opera-

tions. Last but not least, RTM is only a compelling hardware

feature for single machine platform but provides no support

across machines.

RDMA and Strong Consistency. Remote Direct Mem-

ory Access (RDMA) is a fast cross-machine memory ac-

cess technique commonly seen in high-performance com-

puting area. Due to completely bypassing target operating

systems and/or CPU, it has high speed, low latency, and

2 This paper uses HTM/RTM transaction to denote the transactional code

executed under HTM’s protection, and uses transaction to denote the origi-

nal user-written transaction.



Silo [49, 60] DBX [52] Calvin [48] FaRM [16, 17] DrTM [54] DrTM+R

Performance High High Low High Very High Very High

Scale-out No No Yes Yes Yes Yes

Availability No No Yes Yes No Yes

Priori Knowledge None None Read/Write Sets None Read/Write Sets None

Hardware Features None HTM None RDMA HTM/RDMA HTM/RDMA

Table 1. A comparison of various in-memory transaction systems.

low CPU overhead. Generally, RDMA-capable NICs pro-

vide three commutation patterns, including IPoIB that em-

ulates IP over InfiniBand, SEND/RECV Verbs that provide

message exchanges in user-space with kernel bypassing, and

one-sided RDMA that further bypasses target CPU. Prior

work has shown that one-sided RDMA provides the highest

performance among other alternatives [16, 21, 34, 36]. One

interesting feature of RDMA operations is its strong consis-

tency with respect to the memory operations in the target

CPU: an RDMA operation is cache coherent with the mem-

ory operations [54]. Thus, when combining with the strong

consistency of HTM, an RDMA operation will uncondition-

ally abort a conflicting HTM transaction in the target ma-

chine. However, while powerful, one-sided RDMA opera-

tion only provides limited interfaces: read, write, and two

atomic operations (fetch-and-add and compare-and-swap).

Non-volatile Memory: Some data-centers provide an in-

teresting feature called distributed UPS that allows flush-

ing data from volatile memory to persistent storage (like

SSD) [33]. Besides, NVDIMM [43] has been commercially

available by major memory vendors like Micron, Viking,

JEDEC, and Fusion-IO. Finally, 3DXpoint [50], a new non-

volatile memory technology from Intel and Micron, has been

predicted to be available to the market soon. With logging to

disk accounting for a large portion of transaction execution,

these non-volatile memory devices can largely mitigate the

logging overhead of transactions.

2.2 Issues with Prior Systems

While HTM and RDMA are promising hardware features to

boost transaction executions, prior systems either only lever-

age one of them, or fall short in only providing limited trans-

action features. Table 1 illustrates a comparison of recent de-

signs with DrTM+R.

General designs: Silo [49, 60] is a fast in-memory trans-

action for multicore. It adopts fine-grained locking with scal-

able transaction ID to provide scalable transaction process-

ing in a single machine. However, it is not designed to be

scale-out to multiple machines. Calvin [48] leverages deter-

ministic execution for scalable distributed transaction pro-

cessing. Yet, its performance is at least an order of magni-

tude less than that of DrTM+R, due to not exploiting ad-

vanced hardware features like HTM and RDMA. Besides,

Calvin requires priori knowledge of remote read and write

sets, which would limit its applicability to various types of

transactions.

RDMA-only designs: FaRM [16] and its successor [17]

leverage RDMA to provide general distributed transactions.

It abstracts a cluster as a partitioned global address space

and leverages RDMA to fetch remote database records to

be processed locally. It leverages the low-latency feature of

RDMA operations to implement an optimized four-phase

commit with replication, and can recover a failure in less

than 50ms. In contrast, DrTM+R further combines HTM

with RDMA to process distributed transactions and may

have better performance under the same setting.

HTM-only designs: DBX [52] combines HTM with an

OCC protocol to implement efficient transactions on multi-

core machines. To reduce the working set of an HTM trans-

action, it separates execution from commit by only lever-

aging HTM transactions to protect the validation and write

phases. This effectively reduces the working set of an HTM

transaction from all data to all metadata of database records

accessed in a database transaction. DBX-TC [39] imple-

ments an optimized transaction chopping algorithm to de-

compose a set of large transactions into smaller pieces, and

thus only uses HTM transactions to protect each piece. Due

to mostly offloading concurrency control to HTM, it shows

better performance than DBX. However, both of them are

limited to single-machine transactions.

HTM/RDMA designs: DrTM [54] is the closest work

with DrTM+R. Like DrTM, DrTM+R also leverages HTM

and RDMA to provide efficient transaction processing. Un-

like DrTM, DrTM+R places no restrictions on transaction

features such that it requires no priori knowledge of trans-

action working set and provides efficient replication for

high availability, two important features that are missing in

DrTM. Thus, unlike DrTM which combines two-phase lock-

ing (2PL) with HTM, DrTM+R provides a hybrid concur-

rency control protocol that combines optimistic concurrency

control (OCC) with remote locking.

3. Overview

Setting. DrTM+R assumes a modern cluster that is con-

nected with high-speed, low-latency network with RDMA

features. Each processor in the cluster is equipped with

HTM and each machine contains a portion of battery-backed

non-volatile memory for data and logging. DrTM+R targets

OLTP workloads over a large volume of data; it scales by

partitioning data into a large number of shards across multi-

ple machines. DrTM+R employs a worker-thread model by
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Figure 1. The architecture overview of DrTM+R.

running n worker threads atop n cores; each worker thread

executes and commits a transaction at a time.

Approach Overview. Like prior work [52, 54], DrTM+R

comprises of two independent components: transaction layer

and memory store, as shown in Figure 1. DrTM+R lever-

ages a hybrid OCC and locking scheme using HTM and

RDMA (§4). On each machine, DrTM+R utilizes an OCC-

based scheme to provide transaction support. Like typical

OCC, DrTM+R separates execution from commit by first

tracking the read/write sets of a transaction in the execu-

tion phase, validating the read set in the validation phase

and finally committing the updates in the commit phase.

The last two phases require atomicity, which DrTM+R guar-

antees using HTM transactions. DrTM+R exposes a parti-

tioned global address space such that remote records and lo-

cal records are explicitly distinguished using their address

identifiers. DrTM+R follows a local execution model. To

access remote data in a transaction, DrTM+R first fetches

remote records into the hosting machine, makes necessary

updates and then sends the records back to the remote ma-

chine. Remote accesses in DrTM+R are mainly done using

one-sided RDMA operations for efficiency. As there is no

apparent way to guarantee the atomicity between accessing

a record in a remote machine and validating the record in the

local machine, DrTM+R introduces a remote locking phase

(§4.4) before the validation and commit phases, which lever-

ages one-sided RDMA operations to lock remote records.

The high availability of DrTM+R is guaranteed by effi-

cient replication of database records before fully committing

a transaction (§5). This is achieved by leveraging a revised

commit protocol (§5.1). DrTM+R leverages ZooKeeper [20]

to reach an agreement on the current configuration among

surviving machines. Inspired by FaRM [17], an RDMA-

base protocol is used to manage leases, detect failures, and

coordinate recovery(§5.2). Thanks to the fast interconnect,

DrTM+R can detect a failure in a very short time with high

accuracy. During recovery, DrTM+R first reconfigures the

cluster and then recovers the state of crashed machines by

leveraging surviving machines.
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Figure 2. The concurrency control protocol in DrTM+R.

4. Supporting Distributed Transactions

DrTM+R uses an HTM-friendly optimistic concurrency

control (OCC) protocol to provide transaction support within

a single machine and further adopts an RDMA-friendly op-

timistic concurrency control (OCC) protocol to coordinate

accesses to remote records for distributed transactions.

4.1 HTM/RDMA-friendly OCC Protocol

Since an HTM transaction provides strong atomicity and

one-sided RDMA operations are cache-coherent, the prior

system [54] leverages them to bridge the HTM and two-

phase locking (2PL) protocol for distributed transactions.

However, it requires priori knowledge of read/write sets of

transactions for proper locking to implement the 2PL-like

protocol. Unfortunately, this is not always the case for some

general transaction workloads, like TPC-C [46]3 and TPC-

E [47], which have dependent transactions.

DrTM+R addresses this limitation by designing a hy-

brid OCC and locking protocol to provide strictly serial-

izable transactions. The main observation is that the read-

/write of an transaction will be known after the execution

phase in OCC, due to its separation of execution from com-

mit. Hence, DrTM+R has all read/write sets known after the

execution phase. However, any RDMA operation inside an

HTM transaction will unconditionally cause an HTM abort

and thus we cannot directly access remote records through

RDMA within an HTM transaction. To this end, DrTM+R

adjusts the traditional OCC protocol by distinguishing oper-

ations on local and remote records, which will be protected

using HTM and RDMA-based locking mechanisms respec-

tively.

3 DrTM leverages transaction chopping to address this issue for TPC-C
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As shown in Figure 2, DrTM+R organizes the concur-

rency protocol into two phases: execution and commit. In

the execution phase, DrTM+R provides different interfaces

to run transaction code with read and write accesses to lo-

cal and remote records. For read accesses, DrTM+R ensures

consistent accesses to local and remote records by HTM and

RDMA-based versioning respectively, and maintains the lo-

cations (i.e., virtual address or RDMA address) and versions

(i.e., sequence number) of the records in local and remote

read sets (i.e., L RS and R RS). For write accesses, DrTM+R

buffers all updates locally for both local and remote records,

and maintains the location and the buffer of the records in lo-

cal and remote write sets (i.e., L WS and R WS) (§4.3). In the

commit phase, DrTM+R attempts to atomically commit the

transaction using HTM for local records and RDMA-based

locking for remote records. DrTM+R follows the traditional

OCC protocol to first validate that any record in read set is

not changed, and then updates all local buffers in write set to

actual records (§4.4).

Since DrTM+R uses different mechanisms that protect

the accesses and commits of local records by HTM and

remote records by RDMA-based versioning and locking,

DrTM+R cannot simply combine the HTM-based OCC pro-

tocol from an HTM-friendly local database (e.g, DBX [52])

and RDMA-based OCC protocol (e.g., FaRM [17]). For ex-

ample, a conflicting local read within HTM may still read an

inconsistent record, since the update from a remote transac-

tion using one-sided RDMA WRITE is only cache-coherent

within a cache line. To this end, DrTM+R must carefully co-

operate operations on different types of records.

4.2 Data Structure of Records

Based on the general key-value store interface provided by

the memory store layer, the transaction layer implements

typed database tables, namely collections of records. To

facilitate our hybrid protocol, the transaction layer further

encodes the following metadata to each record, as shown

in Figure 3. Note that HTM tracks reads and writes at the

granularity of a cache line, DrTM+R enforces each record

starts at a new cache line, avoiding unnecessary HTM aborts

due to false sharing.

Lock (64-bit): locks the record by distributed transactions

on remote machines. It is used to ensure the isolation of

transactions during the commit phase.

Incarnation (64-bit): tracks the number of frees at the

key-value entry. It is used to detect whether the record has

been freed or not during the commit phase.

TX Layer
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Network

Local Read
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RDMA 
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RDMA 
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Inconsistent 

cache line Time

RDMA WRITERDMA CASHTM

Figure 4. The consistency of local read.

Sequence Number (64-bit): tracks the number of updates

on the record. It is used to detect read-write conflict during

the commit phase.

Version (16-bit): identifies the version (the low-order bits

of sequence number) of data in each cache line. It is used

to check the consistency of a remote access across multiple

cache lines during the execution phase.

4.3 Execution Phase

In the execution phase of the hybrid protocol, DrTM+R only

needs to ensure consistent read accesses to records. All write

operations will be stored in a local private buffer.

For local read accesses, inspired by DBX [52], DrTM+R

uses an HTM transaction to guarantee the consistency of

a local read, as long as the update to the record is also

protected by an HTM transaction. However, the update from

a remote machine may cause inconsistent local read since

one RDMA WRITE to a record larger than one cache line

size will result in separate writes on multiple cache lines.

As shown in Figure 4, the results of the first, second, and

fifth local reads are consistent, and the RDMA WRITE can

correctly abort the third conflicting local read. However, if

the local read runs between updates on multiple cache lines

by the RDMA WRITE, the result will be inconsistent (e.g.,

the fourth read to a record crossing three cache lines, two

updated and one dated).

Fortunately, we observe that a remote transaction al-

ways needs to lock the records before updating. Therefore,

DrTM+R can simply check the lock field of record before

reading to ensure consistency. If the record is locked, a lo-

cal read can manually abort its HTM transaction, which will

retry with a randomized interval until the record is unlocked

before entering into a fallback handler. This avoids compli-

cated mechanisms for consistent read across multiple cache

lines, such as versioning [16] or checksum [34]. However,

this also means that a locked record cannot be read by a lo-

cal transaction even the value is consistent. For example, the

second local read in Figure 4 will abort and retry. Note that

it will not affect the correctness but only incur some neces-

sary false aborts. The false abort is necessary because the

locked record is likely to be updated by the remote transac-

tion soon, the local transaction is inevitable to abort when

validating its local read set during the commit phase, even if



LOCAL_READ(key)

foreach <_key, _value> in local_writeset

if (_key == key)  return _value

XBEGIN() //HTM TX begin

if rec[key].lock == LOCKED //remote commit

XABORT() //HTM TX abort, then retry

_value = rec[key].value

local_readset.add(key, rec[key].SN)

XEND()   //HTM TX end

return _value

LOCAL_WRITE(key, value)
local_writeset.add(key, value)

HTM Transaction

Figure 5. The pseudo-code of local read and write in DrTM+R.

REMOTE_READ(key)
foreach <_key, _value> in remote_writeset

if (_key == key)  return _value

L:rec = RDMA_READ(key)

if !MATCHING_VERSIONS(rec) 

goto L //RETRY: inconsistent read

remote_readset.add(key, rec.SN)

return rec.value

REMOTE_WRITE(key, value)
remote_writeset.add(key, value)

Figure 6. the pseudo-code of remote read and write in DrTM+R.

it reads a consistent but stale record in the execution phase.

Figure 5 illustrates the pseudo-code of local read and write

in DrTM+R.

For remote accesses, inspired by FaRM [16], DrTM+R

uses versioning to implement a lock-free and consistent

read. It mainly relies on the strong consistency provided

by one-sided RDMA READ, which ensures atomic read of

the record written by a local write or a one-sided RDMA

WRITE. However, since it only works in a single cache line,

DrTM+R places the version of record at the start of each

cache line (except the first), as shown in Figure 3 and re-

quires a record write to update each version. Further, the re-

mote read requires to match all versions of the record for

the consistency of value. To save space, DrTM+R uses the

least significant 16 bits of the sequence number as the ver-

sion, which is usually sufficient to avoid overflow within a

single remote read [16]. Note that the versions of the record

are invisible to the user-written transactions. Figure 6 illus-

trates the pseudo-code of remote read and write in DrTM+R.

Different from the versioning in FaRM [16], DrTM+R does

not check the lock field of a record, because the record may

be locked by a distributed transaction on a remote machine

even only for read during the commit phase (see §4.4). How-

ever, because DrTM+R will lock records in the remote read

set during the commit phase, uncommitted read to a remote

record in the execution phase can be detected, and the trans-

action can safely abort to ensure strict serializability.

Table 2 summarizes different mechanisms used by

DrTM+R to ensure consistent read accesses to local and re-

CONSISTENCY COMMIT/L COMMIT/R

READ/L HTM HTM†

READ/R Versioning Versioning

Table 2. A summary of different mechanisms used to ensure

consistency of local and remote reads. L and R stand for Local and

Remote records. (†) READ/R needs to check the lock within HTM

to avoid inconsistent read.

mote records in the execution phase. DrTM+R leverages a

combination of HTM and versioning to guarantee the con-

sistency between local/remote reads/writes.

Finally, the insert/delete operations in DrTM+R will be

shipped to the host machine using SEND/RECV Verbs and

also locally executed within an HTM transaction. As in

prior work [16, 54], DrTM+R adopts incarnation mechanism

to detect invalidation between read and insert/delete opera-

tions. The incarnation is initially zero and is monotonously

increased by insert/delete operations.

4.4 Commit Phase

To fully leverage advanced hardware features, DrTM+R

proposes an HTM/RDMA-friendly six-step commit phase,

which uses HTM for local records and RDMA-based lock-

ing for remote records. For the remote accesses, DrTM+R

uses one-sided RDMA operations instead of messaging used

in FaRM [17], since the later increases the number of inter-

rupts and context switches on the remote machine, which

will unconditionally abort the HTM transactions even with-

out access conflicts. Figure 7 illustrates the pseudo-code of

the commit phase in DrTM+R.

C.1 Lock (remote read/write sets). DrTM+R exclu-

sively locks remote records in both read and write sets

using one-sided RDMA CAS (compare-and-swap), which

provides an equal semantic to the normal CAS instruction

(i.e., local CAS). However, there is an atomicity issue be-

tween local CAS and RDMA CAS operations. The atomic-

ity of RDMA CAS is hardware-specific [32], which can im-

plement any one of the three levels: IBV ATOMIC NONE,

IBV ATOMIC HCA, and IBV ATOMIC GLOB. The RDMA

CAS can only correctly work with local CAS under

IBV ATOMIC GLOB level, while our InfiniBand NIC4 only

provides the IBV ATOMIC HCA level of atomicity. This

means that RDMA CASs can only correctly lock each other.

Fortunately, the lock will only be acquired and released by

remote accesses using RDMA CAS in our protocol. The lo-

cal access will only check the state of a lock, which can cor-

rectly work with RDMA CAS due to the cache coherency of

RDMA operations.

C.2 Validate (remote read set). DrTM+R performs read

validation to remote read records using one-sided RDMA

READs. It checks whether the current sequence numbers of

records are equal to those acquired by remote reads in the

4 Mellanox ConnectX-3 MCX353A 56Gbps InfiniBand NIC.



COMMIT()

//C.1 Lock remote writes and reads

foreach <key> in remote_set

if RDMA_CAS(key, LOCKED, UNLOCKED) != UNLOCKED

ABORT() //ABORT: conflict TX

//C.2 Validate remote reads

foreach <key, SN> in remote_readset

rec = RDMA_READ(key)

if SN != rec.SN  

ABORT() //ABORT: conflict TX

XBEGIN() //HTM TX begin

//C.3 Validate local reads

foreach <key, SN> in local_readset

if SN != rec[key].SN

ABORT() //ABORT: conflict TX

//C.4 Update local writes

foreach <key, value> in local_writeset

if rec[key].lock == LOCKED

ABORT() //ABORT: conflict TX

rec[key] = <value, SN++>

XEND() //HTM TX end

//C.5 Update remote writes

foreach <key, value> in remote_writeset

rec = <value, SN++>

RDMA_WRITE(key, rec)

//C.6 Unlock remote writes and reads

foreach <key> in remote_set

RDMA_CAS(key, UNLOCKED, LOCKED)

HTM Transaction

Figure 7. The pseudo-code of commit in DrTM+R.

execution phase. If any one is changed, the transaction is

aborted. Different from traditional OCC protocol, DrTM+R

must lock the remote records even for reads to ensure strict

serializability, since local records in the write set are not

protected by HTM until the next step. However, this lock will

not block remote read in the execution phase. Further, in an

NIC with the IBV ATOMIC GLOB atomicity level, the lock

field can be encoded in the sequence number of a record, so

that DrTM+R can lock and validate the record using a single

RDMA CAS. Unfortunately, this is not available in our NIC,

and DrTM+R first uses RDMA CAS to lock a remote record

and then fetch the sequence number to validate the record

locally.

C.3 Validate (local read set) and C.4 Update (lo-

cal write set). DrTM+R performs read validation to local

records in the read set first, and commits buffered updates

and increased sequence number to local records in the write

set. The entire accesses on local records are protected by

an HTM transaction. The HTM transaction provides strong

atomicity with any concurrent local accesses to the same

records, and any remote conflicting RDMA accesses will

also abort the HTM transaction. The only exception is that

a remote transaction may lock a local record in the write set

before the start of the HTM transaction. To remedy this is-

sue, DrTM+R adds an additional check before the update

and manually abort the transaction upon a failed check.

ISOLATION COMMIT/L COMMIT/R

COMMIT/L HTM HTM & Locking

COMMIT/R HTM & Locking Locking

Table 3. A summary of different mechanisms used to ensure

isolation of the commitment on local and remote records. L and

R stand for Local and Remote records.

LOCAL_READ_RO(key)
return LOCAL_READ(key)

REMOTE_READ_RO(key)
L:rec = RDMA_READ(key)

if rec.lock == LOCKED || !MATCHING_VERSIONS(rec) 

goto L //RETRY: inconsistent read

remote_readset.add(key, rec.seqno)

return rec.value

COMMIT_RO()
//CR.1 Validate remote reads

foreach <key, seqno> in remote_readset

rec = RDMA_READ(key)

if rec.seqno != seqno  

ABORT() //ABORT: conflict TX

//CR.2 Validate local reads

foreach <key, seqno> in local_readset

if rec[key].seqno != seqno

ABORT() //ABORT: conflict TX

Figure 8. The pseudo-code of read-only transaction interface in

DrTM+R.

C5. Update (remote write set) and C.6 Unlock (remote

read/write sets) DrTM+R writes back updates to remote

records and increases their sequence numbers using RDMA

WRITEs, and after that it reports the transaction as com-

mitted to user. Finally, DrTM+R unlocks all remote records

using RDMA CAS.

Table 3 summarizes different mechanisms used by

DrTM+R to atomically commit the updates on local and re-

mote records.

4.5 Read-only Transactions

Read-only transaction is a special case which usually has a

very large read set involving up to hundreds or even thou-

sands of records. Thus, it will likely abort an HTM trans-

action in the commit phase due to read validation on a

large local read set, since HTM tracks reads and writes at

the granularity of a cache line even if only several bytes

(e.g., sequence number) are accessed. To address this issue,

DrTM+R provides a separate protocol to execute read-only

transactions without HTM and locking in the commit phase.

Figure 8 shows the pseudo-code and interfaces for read-

only transactions. In the execution phase, the read access to

local records is the same to that of read-write transactions,

since it only reads one record at a time. In contrast, the read

accesses to remote records requires an additional check for

the lock to avoid reading uncommitted reads. If the record



is concurrently updated by a remote transaction, the record

must be locked. On the other hand, if the record is concur-

rently updated by a local transaction, the remote read us-

ing RDMA READ will abort the transaction. In the commit

phase, DrTM+R can validate only the sequence numbers of

records in both local and remote read set without any protec-

tion of HTM or locking.

4.6 Strict Serializability

This section gives an informal argument on the strict seri-

alizability of our hybrid concurrency control protocol. We

argue it by reduction that our protocol is equal to traditional

optimistic concurrency control (OCC) [23].

Committed read-write transactions are serializable at the

point of the end of HTM transaction in the commit phase.

This is because the versions of all records in read and write

sets are the same as the versions seen in the execution

phase. First, locking ensures this for remote write records.

Second, the HTM transaction ensures this for local write

records. Finally, the validation phase ensures this invariant

for all read records. Even if the read validation on remote

records is earlier than the HTM transaction, locking on them

makes it equivalent to the validation within the HTM trans-

action. Committed read-only transactions are serializable at

the point of their last read. The validation phase ensures the

versions of all records in the read set at the serialization point

are the same as the versions seen in the execution phase.

Therefore, this is equivalent to executing and committing the

entire transaction atomically at the serialization point. Fur-

ther, the serialization point of transactions is always between

receiving the request to start the transaction and reporting the

committed transaction to user, which ensures strict serializ-

ability.

5. Replication

Many in-memory transaction systems [12, 17, 25, 48] adopt

replication on remote machines to support durability and

availability. However, any I/O operation including RDMA

inside an HTM transaction will unconditionally cause an

HTM abort. Therefore, prior HTM-based transaction sys-

tems [52, 54] only preserve durability rather than availability

by logging to local reliable storage in case of machine fail-

ures.

5.1 Primary-backup Replication

DrTM+R follows FaRM [17] to use vertical Paxos [24] with

primary-backup replication to provide durability and avail-

ability. DrTM+R should send all updates of records to the

non-volatile logs on backup machines after read validation

and before updating the primaries of both local and remote

records, and ask them to truncate logs at the end of a trans-

action. Note that using auxiliary threads to truncate logs

will not impact worker threads to update primaries since the

backups of records will only be used in recovery.
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Figure 9. The primary-backup replication in DrTM+R.

However, using HTM and RDMA to implement dis-

tributed transactions raises a key challenge for replication.

Both validation (C.3) and update (C.4) to local records are

performed within an HTM transaction, and thus replication

to remote machines (R.1) through network I/O inside an

HTM transaction is not allowed inside the HTM transaction,

as shown in Figure 9.

An intuitive solution is to directly move updating back-

ups (R.1) after the HTM transaction commits. However, all

machines can immediately observe the local updates after

the HTM transaction commits (i.e., XEND) through local or

RDMA read. Consequently, a subsequent transaction may

read the updates and then commit, while this transaction may

not commit due to machine failures and the backups does not

receive updates.

DrTM+R proposes an optimistic replication scheme,

which can cooperate with our hybrid OCC protocol. The

key idea is to leave all locally written records in an un-

committable status after the HTM transaction commits; they

will transform to a committable status until both primaries

and backups of the written records have been applied. The

uncommittable record can be optimistically read in the ex-

ecution phase. In the commit phase, the record cannot be

updated when being uncommittable, and read validation

will fail if the record is still uncommittable or has been

changed. The optimistic replication scheme preserves strict

serializability since all subsequent transactions observing

the records updated by a prior transaction will not commit

until the prior transaction commits.

DrTM+R reuses the sequence number (SN) of records

to implement optimistic replication. An odd sequence num-

ber indicates uncommittable, and an even sequence num-



OCC OCC+OR

C.4 Update L WS Primary SNnew+1 SNnew+1

R.1 Update L WS Backup / SNnew+2

R.1 Update R WS Backup / SNnew+2

R.2 Makeup L WS Primary / SNnew+1

C.5 Update R WS Primary SNnew+1 SNnew+2

OCC OCC+OR

Condition of Validation

C.2 R RS SNold == SNcur (SNold +0x1) & ∼0x1 == SNcur

C.2 R WS / SNcur & 0x1 == 0x0

C.3 L RS SNold == SNcur (SNold +0x1) & ∼0x1 == SNcur

C.4 L WS / SNcur & 0x1 == 0x0

Table 4. (a) the change on sequence number (SN) and (b) the condition of validation for records within different read/write sets in COMMIT.

OR stands for optimistic replication. L and R stand for Local and Remote. WS and RS stand for Write Set and Read Set.

ber indicates committable, which is similar to the seqlock

used in Linux. Table 4 summarizes the change on HTM-

based OCC to support optimistic replication. For backups

of changed records (R.1) and primaries of remote writ-

ten records (C.5), DrTM+R directly increases the sequence

number by 2 when updating them. For primaries of local

write records, DrTM+R increases the sequence number by 1

when updating them within the HTM transaction (C.4) and

the makeup phase (R.2) accordingly. There is no change to

the sequence number for local and remote read in the ex-

ecution phase. In the commit phase, DrTM+R validates all

written records using the condition that the current sequence

number should be even, and changes the validation condition

to all read records as the current sequence number should

be equal to the closest committable sequence number of ac-

quired sequence number in the execution phase. Since the

write set is generally a subset of the read set (blind write is

rare) and the condition for written records is included in the

condition for read records, leveraging optimistic replication

only incurs small overhead to the commit phase and has no

impact to the execution phase.

5.2 Failure Recovery

DrTM+R uses similar failure models as prior work [17, 25].

All logs are stored in non-volatile memory, and the logs

will not lose upon machine failures (e.g., relying on an

uninterruptible power supply). A machine in a cluster may

crash at any time, but only in a fail-stop manner instead of

arbitrary failures like Byzantine failures [11, 22].

DrTM+R adopts primary-backup replication in non-

volatile memory with f +1 copies. Therefore, it can provide

durability even under a complete cluster failure and losing

at most f copies for each record. DrTM+R can also provide

availability with at least 1 copy of each record on surviving

machines.

DrTM+R uses the same mechanisms in FaRM [17] to de-

tect machine failures and reconfigure the cluster, but a varied

failure-recovery protocol for transaction state recovery. The

main difference is that DrTM+R directly lock and unlock

remote records using one-sided RDMA CAS. This reduces

the latency of transactions compared to FaRM, which sends

a LOCK message to the logs on target machines and relies

on target worker threads to lock records and sends back re-

sponses. However, it may cause dangling locks after a failure

since there is no log to find records locked by failed ma-

chines. To avoid suspending the whole cluster and check-

ing all records on each machine, DrTM+R adopts a passive

approach to releasing such records. DrTM+R will first en-

code the owner machine ID into the lock of records. Fur-

ther, the worker thread will check whether the owner of the

locked record is the member of the current configuration or

not. If the owner is absent, the worker thread will unlock the

record before aborting and retrying the transaction. It should

be noted that the additional check will not incur perceptibly

overhead to DrTM+R since it is not on the critical path of

normal execution.

6. Implementation Issues

We have implemented DrTM+R using Intel’s Restricted

Transactional Memory (RTM) and Mellanox ConnectX-3

56Gbps InfiniBand. This section describes some specific im-

plementation issues.

6.1 Fallback Handler and Contention Management

As a best-effort mechanism, an RTM transaction does not

have guaranteed forward progress even in the absence of

conflicts. A fallback handler will be executed after the num-

ber of RTM aborts exceeds a threshold. In typical implemen-

tation, the fallback handler first acquires a coarse-grained ex-

clusive lock, and then directly updates all records. To coop-

erate with the fallback handler, the RTM transaction needs

to check this lock before entering its RTM region.

In DrTM+R, however, since local records will also be

remotely accessed by other transactions, the fallback han-

dler may inconsistently update the record out of an RTM

region. Therefore, DrTM+R needs to lock and validate the

local records similar to those required for remote read/write

records. To avoid deadlocks, the fallback handler should re-

lease all owned remote locks first, and then acquire appro-

priate locks for all records in a sorted order. After that, the

fallback handler can execute the validation as usual.

6.2 Atomicity Issues

As mentioned in §4.4, even if RDMA CAS on our Infini-

Band NIC cannot preserve the atomicity with the local CAS,

it will not incur consistency issues in the normal execution of

transactions. However, in the RTM’s fallback handler of the

commit phase, DrTM+R has to lock both local and remote

records. In fact, calling fallback handler in DrTM+R is rare

(lower than 1%) since the conflicts between transactions are



mainly detected by read validation of OCC. Therefore, even

the current performance of RDMA CAS is two orders of

magnitude slower than the local counterpart, DrTM+R still

uniformly uses RDMA CAS to lock local records in fallback

handlers.

6.3 Memory Store

The memory store layer of DrTM+R provides a general key-

value store interface to the upper transaction layer. The most

common usage of this interface is to read or write records

by given keys. To optimize for different access patterns [5,

28, 29], DrTM+R provides both an ordered store in the form

of a B+-tree and an unordered store in the form of a hash

table. For the ordered store, we use the B+-tree in DBX [52],

which uses HTM to protect the major B+-tree operations

and was shown to have comparable performance with state-

of-the-art concurrent B+-tree [31]. For the unordered store,

we use the HTM/RDMA-friendly hash table in DrTM [54],

which uses one-sided RDMA operations for both reads and

writes, as well as provides an RDMA-friendly, location-

based and host-transparent cache to reduce RDMA lookup

cost.

6.4 Local Record Update

Since RTM tracks writes using L1 cache, the write work-

ing set (32K) is much smaller than that of read. To reduce

the working set for local write within the HTM region in

the commit phase, DrTM+R updates local records by swap-

ping the pointer of local buffer instead of overwriting ac-

tual records. However, this optimization can only apply to

records that are always locally accessed. For example, the

NEW ORDER and CUSTOMER tables used by new-order and

delivery transactions in TPC-C.

7. Evaluation

This section presents the evaluation of DrTM+R, with the

goal of answering the following questions:

• How does the performance of DrTM+R with RTM and

RDMA compare to that of the state-of-the-art systems

without using such features?

• Can DrTM+R scale out with the increase of threads and

machines?

• How does each design decision affect the performance of

DrTM+R?

• How fast can DrTM+R recover from failures?

7.1 Experimental Setup

The performance evaluation was conducted on a local clus-

ter with 6 machines. Each machine has two 10-core RTM-

enabled Intel Xeon E5-2650 v3 processors with 64GB of

DRAM. Each core has a private 32KB L1 cache and a pri-

vate 256KB L2 cache, and all 10 cores on a single proces-

sor share a 24MB L3 cache. We disabled hyper-threading on

NEW PAY DLY OS SL

Ratio 45% 43% 4% 4% 4%

Type d+rw d+rw l+rw l+ro l+ro

SP AMG BAL DC WC TS

Ratio 25% 15% 15% 15% 15% 15%

Type d+rw d+rw l+ro l+rw l+rw l+rw

SmallBank

TPC-C

Table 5. The transaction mix ratio in TPC-C and SmallBank. d

and l stand for distributed and local. rw and ro stand for read-

write and read-only. The default probability of cross-warehouse

accesses for NEW and PAY in TPC-C is 1% and 15% respectively.

all machines. Each machine is equipped with a ConnectX-

3 MCX353A 56Gbps InfiniBand NIC via PCIe 3.0 x8 con-

nected to a Mellanox IS5025 40Gbps InfiniBand Switch, and

an Intel X520 10GbE NIC connected to a Force10 S4810P

10/40GbE Switch. All machines run Ubuntu 14.04 with

Mellanox OFED v3.0-2.0.1 stack. We reserve two cores to

run auxiliary threads on each processor for log truncation.

DrTM+R=3 represents 3-way replication enabled for pro-

viding high availability, and will replicate to standby ma-

chines when running on less than 3 machines.

We use two standard benchmarks to evaluate DrTM+R:

TPC-C [46] and SmallBank [4]. TPC-C is a widely-used

OLTP benchmark that simulates principal transactions of an

order-entry environment. These transactions include enter-

ing and delivering orders (new-order and delivery), record-

ing payments (payment), checking the status of orders

(order-status), and monitoring the level of stock at the

warehouses (stock-level). TPC-C scales by partitioning a

database into multiple warehouses spreading across multi-

ple machines. As specified by the benchmark, the through-

put of TPC-C is defined as how many new-order transactions

per second a system processed while the system is executing

four other transactions types. We run the standard-mix but

report the throughput of new-order transactions, which are

45% of total transactions.

SmallBank models a simple banking application where

transactions perform simple read and write operations on

user accounts. The access patterns of transactions are

skewed such that a few accounts receive most of the re-

quests. SmallBank is a mix of six types of transactions

for send-payment (SP), balance (BAL), deposit-checking

(DC), withdraw-from-checking (WC), transfer-to-savings

(TS), and amalgamate (AMG) procedures.

Table 5 shows the percentage of each transaction type and

its access pattern in TPC-C and SmallBank.

It is often hard for cross-system comparison especially for

distributed systems. We keep the settings among different

systems to be identical for each benchmark. We use the

latest Calvin [48] (released in Mar. 2015) and DrTM[54] for

comparison in our experiments. As Calvin is hard-coded to

use 8 worker threads per machine, we have to skip it from
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Figure 10. The throughput of new-order transactions in TPC-C

with the increase of machines while fixing 8 threads each.
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Figure 11. The throughput of new-order transactions in TPC-C

with the increase of threads while fixing 6 machines.

the experiment with varying numbers of threads. We run

Calvin on our InfiniBand network using IPoIB as it was not

designed to use RDMA features, and the released code of

Calvin does not provide logging or replication. We also run

Silo [49] (with logging disabled), a state-of-the-art single-

machine multicore database, on one machine of our cluster.

In all experiments, we dedicate one processor to run up

to 8 worker threads and 2 auxiliary threads. We use the

same machine to generate requests to avoid the impact of

networking between clients and servers as done in prior

work [48, 49, 52]. All experimental results are the average

of five runs.

7.2 Performance and Scalability

TPC-C: We first run TPC-C with the increase of machines

to compare the performance with DrTM and Calvin. Each

machine is configured to run 8 worker threads and each of

them hosts 1 warehouse with 10 districts. All warehouses

in a single machine shares one memory store. Figure 10

shows the throughput of the new-order transaction in TPC-

C’s standard-mix workload. Compare to DrTM, DrTM+R

trades roughly 9.8% (from 2.2%) performance for general-

ity. The main overhead is due to manually maintaining the

local read/write buffers of transactions.

DrTM+R can scale well in term of the number of ma-

chines and provide more than 1.49 million new-order and

3.31 million standard-mix transactions per second (txns/sec)
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Figure 12. The throughput of new-order transactions in TPC-

C with the increase of separate logical machines while fixing 4

threads each.

on 6 machines with 8 threads each, which outperforms

Calvin by up to 29.3X (from 26.8X). DrTM+R=3 only in-

curs up to 41% (from 27%) overhead compared to DrTM+R

due to enabling 3-way replication, and still can outperform

Calvin by up to 21.5X (from 15.8X). However, the perfor-

mance of DrTM+R=3 stops scaling after 12 threads (see

Figure 11). The reason is that DrTM+R=3 requires many

RDMA operations for replication and thus saturate the limit

of NIC. This finding is consistent with FaRM, whose suc-

cessive version [17] uses two 56Gbps RDMA-capable NICs

per machine to overcome this bottleneck. We believe if we

similarly deploy two NICs per machine, DrTM+R will scale

much better.

We further study the scalability of DrTM+R with the in-

crease of worker threads using 6 machines. As shown in

Figure 11, the performance of DrTM drops over 8 threads

due to cross-socket overhead and large working set in HTM.

DrTM+R can scale well up to 16 threads, reaching 2.56 mil-

lion new-order and 5.69 million standard-mix transactions

per second. The speedup of throughput using 16 threads can

reach 9.21X due to small working set in HTM and much

lower HTM abort rate (less than 1%).

As an aside, DrTM+R also has very good single-node

performance. Under 8 threads where all systems scale,

the per-machine throughput for DrTM+R is 150,487 and

248,142 new-order transactions per second for with and

without 3-way replication accordingly, which is comparable

or even faster than Silo without logging (187,747 txns/sec5).

Under 16 threads, the per-machine throughput of Silo and

DrTM+R is 354,579 and 426,628 txns/sec accordingly. This

confirms that our HTM/RDMA-friendly concurrency proto-

col does not sacrifice per-machine efficiency.

To overcome the restriction of existing cluster size, we

scale up to 4 separate logical nodes on a single machine to

emulate the scalability experiment, each of which has fixed

4 worker threads. The interaction between logical nodes

still uses our RDMA-based OCC protocol even on the same

5 Silo only reports standard-mix transactions per second which we multi-

plied by 45% to get the new order transactions per second.
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Figure 14. The throughput of standard-mix in SmallBank on

DrTM+R with the increase of threads using different probability

of cross-machine accesses for SP and AMP.

machine. As shown in Figure 12, DrTM+R can scale well on

24 logical nodes, reaching 2.89 million new-order and 6.43

million standard-mix transactions per second.

SmallBank: We further study the performance and scal-

ability of SmallBank with varying probability of distributed

transactions on DrTM+R. Figure 13 and Figure 14 show the

throughout of SmallBank on DrTM+R (3-way replication

disabled) with the increase of machines and threads accord-

ingly. For a low probability of distributed transactions (1%),

DrTM+R provides high performance and can scale well in

two dimensions. It can achieves over 94 million transactions

per second using 6 machines with 16 threads each, and the

speedup of throughput reaches more than 5.0X for 6 ma-

chines and 9.2X for 16 threads respectively. With the growth

of distributed transactions, DrTM+R still performs stable

throughput increase from 2 machines and scale-well within

a single socket.

Figure 15 and Figure 16 show the throughput of Small-

Bank on DrTM+R=3 (3-way replication enabled) with the

increase of machines and threads accordingly. DrTM+R=3

can scale well with the increase of machines, but only

scale up to 8 threads (6.4 million txns/sec) because the sin-

gle 56Gbps InfiniBand NIC on each machine becomes the

bottleneck. Each transaction requires at least four RDMA

WRITEs for replication. Further, the peak throughput of
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Figure 15. The throughput of standard-mix in SmallBank on

DrTM+R=3 with the increase of machines using different proba-

bility of cross-machine accesses for SP and AMP.
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Figure 16. The throughput of standard-mix in SmallBank on

DrTM+R=3 with the increase of threads using different probability

of cross-machine accesses for SP and AMP.

DrTM+R=3 is much lower than that of DrTM+R since all

transactions in SmallBank only perform a few accesses to

the records (i.e., 1 read and 1 write). Consequently, addi-

tional RDMA operations for replication will dominate the

execution time of transactions. Similarly, deploying more

NICs per machine would make DrTM+R=3 scale much bet-

ter.

7.3 Impact from Distributed Transactions

We further investigate the performance of DrTM+R for dis-

tributed transactions. We adjust the probability of cross-

warehouse accesses for new-order transactions from 1% to

100%, the default setting is 1% according to TPC-C specifi-

cation. Since the average number of items accessed in the

new-order transaction is 10, 10% of cross-warehouse ac-

cesses will result in approximate 57.2% of distributed trans-

actions.

Figure 17 shows the throughput of new-order transac-

tion on different systems with increasing cross-warehouse

accesses. The 100% cross-warehouse accesses results in

73.1% and 81.7% slowdown for DrTM+R with and with-

out 3-way replication respectively, because all transactions

are distributed and any accesses are remote ones. How-

ever, the performance slowdown for 5% cross-warehouse

accesses (close to 35% distributed transaction) is moderate
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Figure 17. The throughput of new-order transaction in TPC-

C with the increase of cross-warehouse accesses while fixing 6

machines and 8 threads each.

(11.0% and 11.1%). In addition, the performance gap be-

tween DrTM+R and DrTM becomes narrow with increasing

distributed transactions, since both of them adopts a similar

mechanism to update remote records.

7.4 Impact from High Contention

To evaluate the performance with a high contention scenario,

we configure each machine to use only one warehouse for

TPC-C. Figure 18 shows the throughput of new-order trans-

action in TPC-C for DrTM+R and DrTM on 6 machines with

the increase of threads. DrTM+R can still outperform DrTM

when there are less than 10 worker threads per machine, this

is mainly because DrTM would fall back to a slow path with

locking more frequently under high contentions. As an op-

timistic concurrency control scheme, DrTM+R incurs more

overhead with the increase of threads due to more contention

and increased read-write conflicts in the commit phase.
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Figure 18. The throughput of new-order transaction in TPC-C

with increasing threads while fixing one warehouse per machine.

7.5 Impact from Data Size

To investigate the impact on throughput from the growing of

database, we configure TPC-C with up to 384 warehouses

(64 warehouses per machine), which uses approximately

28GB and 9GB of DRAM on each machine for DrTM+R

with and without 3-way replication respectively. As shown

in Figure 19, the throughput of new-order transaction on
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Figure 19. The throughput of new-order transaction in TPC-C

with the increase of warehouses while fixing 6 machines and 8

threads each.

each system is stable and even increasing slightly from 48

warehouses. A large database may increase the cache miss

rate, but it also reduces the contention on the database.

7.6 Replication

To investigate the performance cost for replication, we eval-

uate how throughput and latency changes for TPC-C with

3-way replication. Table 6 shows the performance differ-

ence on 6 machines and each with 8 threads. Due to addi-

tional RDMA WRITEs to backups for 3-way replication, the

throughput of the new-order transaction on DrTM+R drops

by 40% and the latency increases 10-20µs. However, we can

see that the rate of validation abort and executing fallback

handler is almost no change, since replicating log to back-

ups is outside the HTM transaction and does not impact read

validation. Compared to DrTM, DrTM+R trades less than

10% throughput for generality (1,651,763 vs. 1,488,850). In

addition, the increase of steps in commit phase of DrTM+R

does not apparently harm the 50th and 90th percentile latency

compared to DrTM (6.55µs and 23.67µs). Specially, for the

long-tail (99th percentile) latency, DrTM+R is even better

than DrTM (86.96µs vs. 80.95µs) due to thoroughly elim-

inating RTM capacity aborts and avoiding mostly fallback

path execution (from 10.02% to 0.67%)

DrTM+R DrTM+R=3

Standard-mix (txn/sec) 3,308,555 1,849,224

New-order (txn/sec) 1,488,850 902,924

Latency (µs)

50% 8.93 18.98

90% 26.24 55.33

99% 80.95 91.51

Validation Abort Rate (%) 3.50 3.90

Fallback Path Rate (%) 0.67 0.68

Table 6. The impact of 3-way replication on throughput and

latency for TPC-C on 6 machines with 8 threads each.

7.7 Recovery

To evaluate performance of DrTM+R=3 upon failures, we

run TPC-C on our 6-node cluster with 8 worker threads each.

DrTM+R=3 enables 3-way replication and conservatively
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Figure 20. The throughput timeline for new-order transaction in

TPC-C with failure.

sets the leases of machines to 10ms. During evaluation,

we kill one machine by turning off its networking, and the

instance on failed machine will be recovered on one of the

surviving machines. Figure 20 shows the timeline with the

throughput of new-order transactions in TPC-C aggregated

at 2ms intervals, which is a zoomed-in view around the

failure. It also shows the time at which the failed machine

is detected due to lease expired (“suspect”); the time at

which the new configuration was committed at all surviving

machines (“config-commit”); the time at which the recovery

on all machines is done (“recovery-done”).

As shown in Figure 20, the throughput drops notably

upon failure but rises rapidly again in about 40ms, 10ms of

which is spent for suspecting a failure and the rest is used

for recovery. The regained throughput of TPC-C is approx-

imately 80% of original peak throughput, because the in-

stance on failed machine is revived on a surviving machine

and there are only 5 machines to handle the workload. Be-

sides, two instances will slightly interfere with each other

due to sharing a single InfiniBand NIC.

8. Other Related Work

Distributed transactions: Providing low-latency, high-

throughput transactions has been a long line of research [3,

12, 13, 15, 17, 26, 35, 37, 38, 48, 49, 55, 56, 58–60]. Ro-

coco [35] reorders conflicting pieces of contended trans-

actions to reduce conflicts while retaining serializability.

Callas [56] instead provides a modular concurrency con-

trol scheme that partitions a set of transactions into a set of

groups and enforces the serializability of each group sep-

arately. Yesquel [3] instead leverages a distributed balance

tree to provide scalable transactions across a cluster of ma-

chines. RIFL [26] and Tapir [58] instead boost transaction

processing by providing a different underlying mechanism

for transaction layer: RIFL provides exact-once RPC se-

mantics to implement linearizable transactions; Tapir instead

builds a consistent transaction layer atop an inconsistent

replication layer to remove redundant support for consis-

tency in both layers. DrTM+R has much better performance

than these systems due to the use of advanced hardware fea-

tures like HTM and RDMA.

Distributed transactional memory: There have been

some effort to investigate the feasibility of distributed trans-

actional memory using hardware of software approaches.

Herlihy and Sun [19] propose a hierarchical cache coher-

ence protocol that takes distance and locality into account to

support transactional memory in a cluster. However, there

is no actual implementation and evaluation of the pro-

posed schemes. Researchers have also investigated the de-

sign and implementation of distributed transactional mem-

ory [8, 10, 30], which, however, usually have inferior per-

formance than its hardware counterpart. Like DrTM [54],

DrTM+R also leverages the strong consistency of RDMA

and strong atomicity of HTM to support fast database trans-

actions, but further provides availability and requires no pri-

ori knowledge of read/write sets.

Concurrency control: There have been multiple ap-

proaches to implement concurrency control, including two-

phase locking [1, 9, 14, 23], timestamp ordering [6, 27]

and commit ordering [41, 42]. There are also other vari-

eties that leverages dependencies to improve performance,

like dependency-aware software transactional memory [40],

ordered sharing lock [2] and balanced concurrency con-

trol [57]. Besides DBX, DBX-TC, and DrTM, Leis et al. [27]

combines time-stamp ordering with HTM to provide scal-

able transactions. DrTM+R is built atop prior concurrency

control approaches by combining OCC with HTM and

RDMA to derive a hybrid approach to general transaction

processing.

9. Conclusion

This paper described DrTM+R, an in-memory transaction

processing system that leverages advanced hardware fea-

tures like HTM and RDMA to provide high performance

and low latency, while preserving the generality and provid-

ing high availability. DrTM+R leverages a hybrid concur-

rency scheme that combines OCC with remote locking for

distributed transactions, and uses a progressive replication

scheme to tackle the race condition between replication and

HTM transaction commits. Evaluations using typical OLTP

workloads like TPC-C and SmallBank confirmed the benefit

of designs in DrTM+R.
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