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Abstract

We present DrTM, a fast in-memory transaction process-

ing system that exploits advanced hardware features (i.e.,

RDMA and HTM) to improve latency and throughput by

over one order of magnitude compared to state-of-the-art

distributed transaction systems. The high performance of

DrTM are enabled by mostly offloading concurrency con-

trol within a local machine into HTM and leveraging the

strong consistency between RDMA and HTM to ensure se-

rializability among concurrent transactions across machines.

We further build an efficient hash table for DrTM by lever-

aging HTM and RDMA to simplify the design and notably

improve the performance. We describe how DrTM supports

common database features like read-only transactions and

logging for durability. Evaluation using typical OLTP work-

loads including TPC-C and SmallBank show that DrTM

scales well on a 6-node cluster and achieves over 5.52 and

138 million transactions per second for TPC-C and Small-

Bank respectively. This number outperforms a state-of-the-

art distributed transaction system (namely Calvin) by at least

17.9X for TPC-C.

1. Introduction

Fast in-memory transaction processing is a key pillar for

many systems like Web service, stock exchange and e-

commerce. A common way to support transaction process-

ing over a large volume of data is through partitioning data

into many shards and spreading the shards over multiple ma-

chines. However, this usually necessitates distributed trans-

actions, which are notoriously slow due to the cost of coor-

dination among multiple nodes.

This paper tries to answer a natural question: with ad-

vanced processor features and fast interconnects, can we
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build a transaction processing system that is at least one

order of magnitude faster than the state-of-the-art systems

without using such features. To answer this question, this

paper presents the design and implementation of DrTM, a

fast in-memory transaction processing system that exploits

HTM and RDMA to run distributed transactions on a mod-

ern cluster.

Hardware transactional memory (HTM) has recently

come to the mass market in the form of Intel’s restricted

transactional memory (RTM). The features like atomicity,

consistency and isolation (ACI) make it very promising

for database transactions [31, 44, 57]. Meanwhile, RDMA,

which provides direct memory access (DMA) to the mem-

ory of a remote machine, has recently gained considerable

interests in the systems community [21, 28, 37].

DrTM mainly leverages HTM to do most parts of con-

currency control like tracking read/write sets and detecting

conflicting accesses in a local machine. For transactions with

large working set, DrTM may leverage transaction chop-

ping [44, 45, 59] to fit the read/write set of each chopped

transaction piece into the working set of an HTM transac-

tion1. To preserve serializability among concurrent trans-

actions across multiple machines, DrTM provides the first

design and implementation of distributed transactions us-

ing HTM, by leveraging the strong consistency feature of

RDMA (where an RDMA operation will abort an HTM

transaction that accesses the same memory location) to glue

multiple HTM transactions together while preserving serial-

izability.

One main challenge of supporting distributed transac-

tions is the fact that no I/O operations including RDMA

are allowed within an HTM region. DrTM addresses this

with a concurrency control protocol that combines HTM

and two-phase locking (2PL) [7] to preserve serializability.

Specifically, DrTM uses RDMA-based compare-and-swap

(CAS) to lock and fetch the corresponding database records

from remote machines before starting an HTM transaction.

Thanks to the strong consistency of RDMA and the strong

1 This paper uses HTM/RTM transaction or HTM/RTM region to describe

the transaction code executed under HTM/RTM’s protection, and uses

transaction to denote the original user-written transaction.
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atomicity of HTM2, any concurrent conflicting transactions

on a remote machine will be aborted. DrTM leverages this

property to preserve serializability among distributed trans-

actions. To guarantee forward progress, DrTM further pro-

vides contention management by leveraging the fallback

handler of HTM to prevent possible deadlock and livelock.

As there is no effective way to detect local writes and

remote reads, a simple approach is using RDMA to lock

a remote record even if a transaction only needs to read

that record. This, however, significantly limits the paral-

lelism. DrTM addresses this issue by using a lease-based

scheme [23] to unleash parallelism. To allow read-read

sharing of database records among transactions across ma-

chines, DrTM uses RDMA to atomically acquire a lease of

a database record from a remote machine instead of simply

locking it, such that other readers can still read-share this

record.

While RDMA-friendly hash tables have been intensively

studied recently [21, 28, 37], we find that the combination

of HTM and RDMA opens new opportunities for a more

efficient design that fits the distributed transaction process-

ing in DrTM. Specifically, our RDMA-friendly hash table

leverages HTM to simplify race detection among local and

remote read, to reduce the overhead of local operations, and

to save spaces for hash entries. Besides, based on the ob-

servation that structural changes of indexes are usually rare,

DrTM provides a host-transparent cache that only caches

the addresses of database records as well as an incarnation

checking [21] mechanism to detect invalidation. The cache

is very space-efficient (caching locations instead of values)

and significantly reduces RDMA operations for searching a

key-value pair.

We have implemented DrTM, which also supports read-

only transactions and uses logging for durability [54, 57, 60].

To demonstrate the efficiency of DrTM, we have conducted

a set of evaluations of DrTM’s performance using a 6-node

cluster connected by InfiniBand NIC with RDMA. Each

machine of the cluster has two 10-core RTM-enabled In-

tel Xeon processors. Using two popular OLTP workloads

including TPC-C [51] and SmallBank [49], we show that

DrTM can perform over 5.52 and 138 million transactions

per second for TPC-C and SmallBank respectively. A simu-

lation of running multiple logical nodes over each machine

shows that DrTM may be able to scale out to a larger-scale

cluster with tens of nodes. A comparison with a state-of-the-

art distributed transaction system (i.e., Calvin) shows that

DrTM is at least 17.9X faster for TPC-C.

In summary, the contributions of this paper are:

• The first design and implementation of exploiting the

combination of HTM and RDMA to boost distributed

transaction processing systems (§3).

2 This means a concurrent conflicting access outside an HTM region will

unconditionally abort a conflicting HTM transaction.

• A concurrency control scheme using HTM and 2PL that

glues together multiple concurrent transactions across

machines and a lease-based scheme that enables read-

read sharing across machines (§4).

• An HTM/RDMA-friendly hash table that exploits HTM

and RDMA to simplify the design and improve perfor-

mance as well as a location-based cache to further reduce

RDMA operations (§5).

• A set of evaluations that confirm the extremely high per-

formance of DrTM (§7).

2. Background

HTM. To mitigate the challenge of writing efficient multi-

threaded code with fine-grained locking, hardware transac-

tional memory (HTM) was proposed as an alternative with

the goal of providing comparable performance with less

complexity. Intel’s Restricted Transactional Memory (RTM)

provides strong atomicity [10] within a single machine,

where a non-transactional code will unconditionally abort

a transaction when their accesses conflict. RTM uses the

first-level cache to track the write set and an implementation-

specific structure to track the read set, and relies on the cache

coherence protocol to detect conflicts. Upon a conflict, at

least one transaction will be aborted. RTM provides a set of

interfaces including XBEGIN, XEND and XABORT, which

will begin, end and abort a transaction accordingly.

As a practical hardware mechanism, the usage of RTM

has several restrictions [56, 57]. First, the read/write set of

an RTM transaction must be limited in size. It is because

the underlying CPU uses private caches and various buffers

to track the conflicts of reads and writes. The abort rate of

an RTM transaction will increase significantly with the in-

crease of working set. Beyond the hardware capacity, the

transaction will be always aborted. Second, some instruc-

tions and system events such as network I/O may abort the

RTM transaction as well. Third, RTM provides no progress

guarantees about transactional execution, which implies a

non-transactional fallback path is required when the num-

ber of RTM transaction aborts exceeds some threshold. Last

but not least, RTM is only a compelling hardware feature for

single machine platform, which limits a distributed transac-

tion system from getting profit from it. Note that, though this

paper mainly uses Intel’s RTM as an example to implement

DrTM, we believe it should work similarly for other HTM

systems. Specifically, HTM implementations with a large

working set would perform extremely well under DrTM.

RDMA. Remote Direct Memory Access (RDMA) is a

networking feature to provide cross-machine accesses with

high speed, low latency and low CPU overhead. Much prior

work has demonstrated the benefit of using RDMA for in-

memory stores [28, 37] and computing platforms [21, 40].

RDMA provides three communication options with dif-

ferent interfaces and performance. First, IPoIB emulates

IP over InfiniBand, which can be directly used by exist-
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Figure 1. The architecture overview of DrTM.

ing socket-based code without modification. Yet, its perfor-

mance is poor due to the intensive OS involvement. Second,

SEND/RECV Verbs provide a message-passing interface

and implement message exchanges in user space through

bypassing kernel. The communication between machines is

two-sided, since each SEND operation requires a RECV op-

eration as a response. Third, the one-sided RDMA allows

one machine to directly access the memory of another ma-

chine without involving the host CPU, which provides very

good performance [21, 28, 37] but much limited interfaces:

read, write and two atomic operations (fetch-and-add and

compare-and-swap).

3. Overview

Setting. DrTM is an in-memory transaction processing sys-

tem, which targets OLTP workloads over a large volume

of data. It aims at leveraging emerging processor (HTM)

and network (RDMA) features to efficiently run transactions

on a modern cluster. DrTM scales by partitioning data into

many shards spreading across multiple machines connected

by high-performance networking with RDMA support. For

each machine with n cores, DrTM employs n worker threads,

each of which executes and commits a single transaction at a

time, synchronizing with other threads using the HTM trans-

actions.

Approach Overview. We build DrTM out of two inde-

pendent components: transaction layer and memory store.

Figure 1 illustrates the execution of local and distributed

transactions in DrTM. Like other systems [21], DrTM ex-

poses a partitioned global address space [15, 16], where all

memory in a cluster is exposed as a shared address space,

but a process needs to explicitly distinguish between local

and remote accesses. A remote access in DrTM is mainly

done using one-sided RDMA operations for efficiency.

On each machine, DrTM utilizes HTM to provide trans-

action support. When a transaction’s size is too large to

fit into the working set of HTM or to lead to large abort

rate, DrTM leverages transaction chopping with optimiza-

tions [44, 45, 59] to decompose larger transactions into

smaller pieces. In this case, there is a restriction such that

only the first piece may contain a user-initiated abort, as in

prior work [59].

DrTM is further designed with a concurrency control

scheme to glue all transactions together while preserving

strict serializability. Typical systems mostly either use two-

phase locking (2PL) [7] or optimistic concurrency control

(OCC) [30]. Since HTM relies on hardware (CPU) to do

concurrency control for local transactions, which is hard to

be aborted and rolled back by software. Therefore, to pre-

serve serializability among conflicting transactions on mul-

tiple nodes, we design a 2PL-like protocol to coordinate

accesses to the same database records from local and re-

mote worker threads. To bridge HTM (which essentially uses

OCC) and 2PL, DrTM implements the exclusive and shared

locks using one-sided RDMA operations, which are cache-

coherent with local accesses and thus provide strong consis-

tency with HTM.

The memory store provides a general key-value store

interface to the transaction layer. We design and implement

an HTM/RDMA-friendly hash table, which uses one-sided

RDMA operations to perform both read and write to remote

key-value pairs and provides a RDMA-friendly, location-

based and host-transparent cache.

Limitation. DrTM currently has three main limitations.

First, similar to some prior work [2, 52], DrTM requires

advance knowledge of read/write sets of transactions for

proper locking to implement the 2PL-like protocol. Second,

DrTM only provides an HTM/RDMA-friendly key-value

store for the unordered store using hash table and still re-

quires SEND/RECV Verbs for remote accesses of the or-

dered stores. Finally, DrTM currently preserves durability

rather than availability in case of machine failures, as done

in recent in-memory databases [54, 57, 60]. We plan to ad-

dress these issues in our future work.

4. Supporting Distributed Transactions

DrTM uses HTM to provide transaction support within a

single machine, and further adopts the two-phase locking

(2PL) protocol to coordinate accesses to remote records for

distributed transactions.

4.1 Coordinating Local and Distributed Transactions

Since an HTM transaction provides strong atomicity and

one-sided RDMA operations are cache-coherent, DrTM uses

them to bridge the HTM and 2PL protocol. The one-sided

RDMA operation presents as a non-transactional access for

remote records in distributed transactions, which can directly

abort the conflicting HTM transactions running on the target

machine.

However, any RDMA operation inside an HTM transac-

tion will unconditionally cause an HTM abort and thus we

cannot directly access remote records through RDMA within

HTM transactions. To this end, DrTM uses 2PL to safely ac-

cumulate all remote records into a local cache prior to the

actual execution in an HTM transaction, and write back the

committed updates to other machines until the local commit

of the HTM transaction or discard temporal updates after an

HTM abort.
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Figure 2. The various cases of conflicts between local and dis-

tributed transactions.

DrTM provides strictly serializable transactions, which

are organized into three phases: Start, LocalTX and Com-

mit (see Figure 2(a)). In the Start phase, a transaction locks

and prefetches required remote records in advance, and then

runs XBEGIN to launch an HTM transaction. In the LocalTX

phase, the HTM transaction provides transactional read and

write for all local records. In the Commit phase, the dis-

tributed transaction first commits the HTM transaction us-

ing XEND, and then updates and unlocks all remote records.

Figure 3 shows the pseudo-code of the main transaction in-

terfaces provided by DrTM. The confirmation of all leases

in the Commit phase will be further explained in §4.3.

Similar with prior work [2, 52], DrTM requires advanced

knowledge of read/write sets of transactions for locking and

prefetching in the Start phase. Fortunately, this is the case for

typical OLTP transactions like TPC-C3, SmallBank [3, 49],

Article [47] and SEATS [48]. For workloads that do not sat-

isfy this requirement, we can add a read-only reconnais-

sance query to discover the read/write set of a particular

transaction and check again if the set has been changed dur-

ing the transaction [52].

Since we use different mechanisms to protect local trans-

actions by HTM and distributed transactions by 2PL, the

same type of transactions can correctly cooperate with each

other. For example, as shown in Figure 2(e), a distributed

transaction will lock the remote records to prevent an-

other distributed transaction from accessing the same record.

However, the distributed transactions protected by a software

mechanism (2PL) cannot directly work with the local trans-

action protected by a hardware mechanism (HTM). Since the

RDMA operations on remote records in distributed transac-

tions are presented as non-transactional accesses, they can

directly abort local transactions which also access the same

records earlier within an HTM region (see Figure 2(b)).

Unfortunately, if the local accesses happen later than the re-

mote ones, the conflicting local transaction will incorrectly

commit (see Figure 2(c) and (d)). To this end, DrTM further

checks the state of records inside local read and write oper-

3 There are two dependent transactions in TPC-C: order-status and payment.

Since the order-status transaction is read-only, DrTM will run it using a

separate scheme without advanced knowledge of its read set (§4.5). For the

payment transaction, transaction chopping will transform dependent results

of secondary index lookup into inputs of subsequent transaction pieces.
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Figure 3. The pseudo-code of transaction interface in DrTM.

ations of an HTM transaction and explicitly aborts the HTM

transaction if a conflict is detected. Further details will be

presented in §4.3.

4.2 Exclusive and Shared Lock

The implementation of the 2PL protocol relies on read/write

locks to provide exclusive and shared accesses. The lack of

expressiveness of one-sided RDMA operations (e.g., only

READ/WRITE/CAS) becomes a major challenge.

RDMA provides one-sided atomic compare-and-swap

(CAS), which is easy to implement the exclusive lock. The

semantic of RDMA CAS is equal to the normal CAS instruc-

tion (i.e., local CAS), which atomically swaps the current

value with a new value if it is equal to the expected value.

However, there is an atomicity issue between local CAS and

RDMA CAS operations. The atomicity of RDMA CAS is

hardware-specific [36], which can implement each of the

three levels: IBV ATOMIC NONE, IBV ATOMIC HCA and

IBV ATOMIC GLOB. The RDMA CAS can only correctly

work with local CAS under IBV ATOMIC GLOB level,

while our InfiniBand NIC4 only provides the IBV ATOMIC

HCA level of atomicity. This means that only RDMA CASs

can correctly lock each other. Fortunately, the lock will only

be acquired and released by remote accesses using RDMA

CAS. The local access will only check the state of locks,

which can correctly work with RDMA CAS due to the cache

coherence of RDMA memory.

4 Mellanox ConnectX-3 MCX353A 56Gbps InfiniBand NIC.
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Figure 4. The pseudo-code of lease in DrTM.

Compared to the exclusive lock, the shared lock requires

extremely complicated operations to handle both sharing

and exclusive semantics, which exceeds the expressiveness

of one-sided RDMA operations. DrTM uses a variant of

lease [23] to implement the shared lock. The lease is a con-

tract that grants some rights to the lock holder in a time pe-

riod, which is a good alternative to implement shared locking

using RDMA due to no requirement of explicit releasing or

invalidation.

The lease-based shared lock is only acquired by dis-

tributed transactions to safely read the remote records in

a time period, while the local transactional read can directly

overlook the shared lock due to the protection from HTM.

All local and remote transactional write will actively check

the state of the shared lock and abort itself when the lease

is not expired. Further, to ensure the validation of leases up

to the commit point, an additional confirmation is inserted

into the Commit phase before the commitment of local HTM

transaction (i.e., XEND).

4.3 Transactional Read and Write

Figure 4 illustrates the data structure of the state, which

combines exclusive (write) and shared (read) lock into a 64-

byte word. The first (least) bit is used to present whether

the record is exclusively locked or not, the 8-bit owner id

is reserved to store the owner machine ID of each exclu-

sive lock for durability (see §4.6), and the rest of 55-bit

read lease is used to store the end time of a lease for

sharing the record. We used the end time instead of the du-

ration of the lease since it will be easy to make all leases

of a distributed transaction expire in the same time, which

can simplify the confirmation of leases (see COMMIT in Fig-

ure 3). The duration of read lease may impact on parallelism

and abort rate in DrTM. Finding the best duration of a lease

is beyond the scope of this paper and is part of our future

work. Currently, DrTM simply fixes the lease duration as
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Figure 5. the pseudo-code of remote read and write in DrTM.

1.0 ms for read-only transactions and 0.4 ms for the rest of

transactions according to our cluster setting.

The initial state is INIT (i.e., 0x0), and the state will

be set to W LOCKED, which is piggybacked with a machine

ID for exclusively locking the record. The record is validly

shared among readers, only if the first bit is zero and the

current time (i.e., now) is earlier than the end time of its

lease. The DELTA is used to tolerate the time bias among

machines, which depends on the accuracy of synchronized

time (see §6.1).

Figure 5 shows the pseudo-code of remote read and write.

The one-sided RDMA CAS is used to lock remote records.

For remote read (i.e., REMOTE READ), if the state is INIT

or shared locked with unexpired lease, the record will be suc-

cessfully locked in shared mode with expected or original

end time. An additional RDMA READ will fetch the value

of record into a local cache, and the end time is returned.

If the state is locked with an expired lease, the remote read

will retry RDMA CAS to lock the record with the correct

current state by RDMA CAS. If the record has been locked

in the exclusive mode, the remote read will abort. Similarly,

the beginning of remote write (i.e., REMOTE WRITE) will

also use RDMA CAS to lock the remote record but with

the state LOCKED. Another difference is that the remote

write will abort if the state is locked in shared mode and

the lease is not expired. The ending of a remote write (i.e.,

91



�����(� �������

����
���.���/-	�
��������""� �0�15�&

%(��������%(���4�	�
���������
���� �����������
���	
����������	�
��

��������
����.���/

�����(���� �������
����

����
���.���/-	�
��������""� �0�15�&

%(����� ��%(���4�	�
���������
����


���'F!��&��$&��!�����
���.���/��
������
���>H
������
�����H�
�
I
�
���
��
���.���/-��
����
���"�7
�
����.���/�"��
���

����
%(����� ��%(���4���
� ������

Figure 6. The pseudo-code of local read and write in DrTM.

REMOTE WRITE BACK) will write back the update to re-

mote record and release the lock. Note that the abort (i.e.,

ABORT) needs to explicitly release all owned exclusive locks

and the transaction needs to retry. To simplify the exposition,

we skip such details in the example code.

As shown in Figure 6, before actual accesses to the

record, the local read (i.e., LOCAL READ) needs to ensure

that the state is not locked in the exclusive mode. For the

local write (i.e., LOCAL WRITE), it must further consider

that the state is also not locked with an unexpired lease. In

addition, the expired lease will be actively cleared in local

write to avoid an additional RDMA CAS in remote read and

write. Since this optimization has a side effect that adds the

state of record into the write set of HTM transaction, it will

not be used in local read, avoiding the false abort due to

concurrent local reads.

L RD L WR R RD R WR R WB

State RS RS WR WR WR

Value RS WS RD RD WR

Table 1. The impact of local and remote operations to the state

and the value of record. L and R stand for Local and Remote. RD,

WR and WB stand for Read, Write and Write Back. RS and WS stand

for Read Set and Write Set.

Table 1 lists the impact of local and remote operations to

the state and the value of the record. Despite read or write,

local access will only read the state, while remote access will

write the state. The false write to the state by remote read

may result in false conflict with local read (see Table 2). Fur-

thermore, even though HTM tracks the read/write set at the

cache-line granularity, we still contiguously store the state

and the value to reduce the working set. Because there is

no false sharing between them; they will always be accessed

together.

Table 2 further summarizes the conflict between local and

distributed transactions due to different types and interleav-

ings of accesses to the same record. The conflict involved

in the remote write back (R WB) is ignored, since it always

holds the exclusive lock. There is only one false conflict un-

Fig.2(b) Fig.2(c) Fig.2(d)

L RD L WR L RD L WR L RD L WR

R RD C C S C S C

R WR C C C C C C

Table 2. The conflict state between local and distributed transac-

tions due to different types and interleaves of accesses to the same

record. L and R stand for Local and Remote. RD and WR stand for

Read and Write. S and C stand for Share and Conflict.

der the interleaving as shown in Figure 2(b). The remote read

(R RD) will incorrectly abort the transactions which only lo-

cally read (L RD) the same record earlier, since the state in

the read set of the transaction is written by the remote read

for locking. Fortunately, we observe that such a case is rare

and have little impact on performance.

4.4 Strict Serializability

This section gives an informal argument on the strict seri-

alizability of our hybrid concurrency control protocol. We

argue it by reduction that our protocol equals to the strict

two-phase locking (S2PL) [24]. S2PL complies with 1) all

locks are acquired and no locks are released in the expanding

phase, 2) all shared (read) locks are released and no lock is

acquired in the shrinking phase, and 3) all exclusive (write)

locks are released only after the transaction has committed

or aborted.

First, we show that the behavior of HTM region for local

records to be written and read is equivalent to the exclusive

and shared lock respectively. If both the two conflicting

accesses are local and at least one is write, HTM ensures

that at least one of the transactions will abort. If one of

the conflicting accesses is remote, HTM with the help of

the state of record can still correctly check the conflict and

abort the local transaction, as shown in Table 2. The false

conflict between local and remote reads only affects the

performance, not the correctness.

Second, we also show that our lease-based shared lock is

equivalent to a normal shared lock. Suppose that one record

is locked in shared mode with a lease by a transaction before

reading it. After that, other reads are able to share this lease,

while any write to the record will be rejected until the lease is

expired. On the other hand, the transaction will confirm the

validation of lease before commitment, and pessimistically

abort itself if the lease has expired.

Finally, we argue that all locks will be released at a right

time. The “lock” for local records will be released after the

HTM transaction commits or aborts. The confirmation after

all execution of the transaction means that all shared locks

are released in the shrinking phase that no lock will be ac-

quired. After the HTM transaction commits, the updates to

local records have been committed, and the updates to re-

mote records will also eventually be committed. All exclu-

sive locks will be released after that time.
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Figure 7. The design of logging and recovery in DrTM.
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Figure 8. The pseudo-code of read-only transaction interface in

DrTM.

4.5 Read-only Transactions

Read-only transaction is a special case which usually has a

very large read set involving up to hundreds or even thou-

sands of records. Thus, it will likely abort an HTM transac-

tion. To remedy this, DrTM provides a separate scheme to

execute read-only transactions without HTM.

Figure 8 shows the pseudo-code of the interface for read-

only transactions. The transaction first locks all records in

shared mode with the same end time and prefetches the

values into a local cache. After that, the transaction needs

to confirm the validation of all shared locks using the end

time. As the use of lease equals to a read lock, this simple

scheme ensures that a read-only transaction can always read

a consistent state.

This simple solution provides two key benefits. First,

acquiring and holding shared locks until all records are read

can ensure that there are no inflight conflicting transactions

on any machine. This preserves the strict serializability of

DrTM. Second, prior work [39] uses two-round execution to

confirm the two rounds return the same results, which may

be lengthy and result in new conflicts. DrTM provides an

efficient and lightweight approach by directly checking the

end time of shared locks.

4.6 Durability

DrTM currently preserves durability rather than availability

in case of machine failures, as done in recent in-memory

databases [54, 57, 60]. How to provide availability, e.g.,

through efficiently replicated logging [21, 22], will be our

future work.

DrTM uses similar failure models as other work [22, 41],

where each machine has an uninterruptible power supply

(UPS) that provides power during an outage. It assumes the

flush-on-failure policy [41] and uses the power from the UPS

to flush any transient state in processor registers and cache

lines to non-volatile DRAM (NVRAM, like NVDIMM [50])

and finally to a persistent storage (e.g., SSD) upon a failure.

A machine in a cluster may crash at any time, but only in a

fail-stop manner instead of arbitrary failures like Byzantine

failures [13, 29]. DrTM uses an external highly reliable co-

ordination service, Zookeeper [27], to detect machine fail-

ures through a heartbeat mechanism and to notify surviv-

ing machines to assist the recovery of crashed machines.

Zookeeper connects DrTM over a separate10GbE network

to avoid rewriting it for RDMA.

Using HTM and RDMA to implement distributed trans-

actions raises two new challenges for durability by logging.

First, as all machines can immediately observe the local

updates after the commitment of a local HTM transaction

(i.e., XEND), DrTM needs to eventually commit the database

transaction enclosing this HTM transaction, even if this ma-

chine failed. Second, due to all records in each machine are

available to one-sided RDMA accesses without the involve-

ment of this machine, a machine can no longer log all ac-

cesses to its owned records.

DrTM uses cooperative logging and recovery for durabil-

ity. In each machine, besides logging local updates within an

HTM transaction, DrTM also logs remote updates through

RDMA operations, including locking (RDMA CAS) and

updates (RDMA WRITE) to remote records. The left part

of Figure 7 shows that each transaction issues logging op-

erations both before and within the HTM region. Before

the HTM region, a transaction first logs chopping informa-

tion (e.g., the remaining transaction pieces) if it is part of a

larger parent transaction when transaction chopping is ap-

plied. Such chopping information is used to instruct DrTM

on which transaction piece to execute after recovery from a

crash. The transaction also logs its remote write set ahead of

any exclusive locking (lock-ahead log) so that DrTM knows

which records need to be unlocked during recovery. Before

committing an HTM region, a transaction logs all updates of

both local and remote records (write-ahead log) to NVRAM.

These can be used for recovery by writing such records on

the target machines. Note that each record piggybacks a ver-

sion to decide the order of updates from different transac-

tions, which is initially zero by record insertion and is in-

creased by each local and remote write.
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DrTM checks the persisted logs to determine how to do

recovery, as shown in the right part of Figure 7. If the ma-

chine crashed before the HTM commit (i.e., XEND), it im-

plies that the transaction is not committed and thus the write-

ahead log will not appear in NVRAM due to the all-or-

nothing property of HTM. The lock-ahead log will be used to

unlock remote records during recovery when necessary (see

Figure 7(a)). Note that several bits (e.g., 8) of the state struc-

ture (see Figure 4) are reserved to store the owner machine

of each exclusive lock, which can be used to identify the

machine that locks the record at last. If the machine crashed

after the HTM transaction commits, it implies that the trans-

action should be eventually committed and the write-ahead

log in NVRAM can be used to write back and unlock local

and remote records when recovery (see Figure 7(b)).

From the perspective of surviving machines, their worker

threads suspended their transactions involving the remote

records in the crashed machine and wait for the notifica-

tion from Zookeeper to assist the recovery. Currently, DrTM

does not switch the worker thread to the next transaction

for simplicity and for beginning the recovery as soon as

possible. Figure 7(c), (d) and (e) show three cases of re-

lated transactions in a surviving machine to assist the re-

covery of a crashed machine, which correspond to locking

in REMOTE WRITE, unlocking in ABORT and updating in

WRITE BACK respectively.

5. Memory Store Layer

The memory store layer of DrTM provides a general key-

value store interface to the upper transaction layer. The most

common usage of this interface is to read or write records

by given keys. To optimize for different access patterns [5,

32, 33], DrTM provides both an ordered store in the form of

a B+ tree and an unordered store in the form of a hash ta-

ble. For the ordered store, we use the B+ tree in DBX [57],

which uses HTM to protect the major B+ tree operations and

was shown to have comparable performance with state-of-

the-art concurrent B+ tree [35]. For the unordered store, we

further design and implement a highly optimized hash table

based on RDMA and HTM. For ordered store, as there is

no inevitable remote access to such database tables in our

workloads (i.e., TPC-C and SmallBank), we currently do

not provide RDMA-based optimization for such tables. Ac-

tually, how to implement a highly-efficient RDMA-friendly

B+ tree is still a challenge.

5.1 Design Spaces and Overview

There have been several designs that leverage RDMA to op-

timize hash tables, as shown in Table 3. For example, Pi-

laf [37] uses one-sided RDMA READs to perform GETs

(i.e., READ), but requires two-sided RDMA SEND/RECV

Verbs to ship update requests to the host for PUTs (i.e.,

INSERT/WRITE/DELETE). It uses two checksums to de-

tect races among concurrent reads and writes and provides

Pilaf [37] FaRM [21] DrTM

Hashing Cuckoo Hopscotch Cluster

Value Store Outside Out/Inside† Outside

One-sided RDMA Read Read Read/Write

Race Detection Checksum Versioning HTM/Lock

Transaction No Yes Yes

Caching No No Yes

Table 3. A summary of various RDMA-friendly hashtable-based

key-value stores. (†) FaRM can put the small fixed-size value inside

the header slot with the key to save one RDMA READ but increase

the size of RDMA READs.

no transaction support. Cuckoo hashing [43] is used to re-

duce the number of RDMA operations required to perform

GETs. Similarly, the key-value store on top of FaRM [21]

(FaRM-KV) also uses one-sided RDMA READs to perform

GETs, while a circular buffer and receive-side polling instead

of SEND/RECV Verbs are used to support bi-directional

accesses for PUTs. Multiple versions, lock and incarnation

fields are piggybacked to the key-value pair for race detec-

tion. A variant of Hopscotch hashing [25] is used to balance

the trade-off between the number and the size of RDMA op-

erations. Another design alternative is HERD [28], which

focuses on reducing network round trips. HERD uses a mix

of RDMA WRITE and SEND/RECV Verbs to deliver all re-

quests to the host for both GETs and PUTs, which requires

non-trivial host CPU involvement. DrTM demands a sym-

metry memory store layer to support transaction processing

on a cluster, in which all machines are busy processing trans-

actions and accessing both local and remote memory stores.

Therefore, we do not consider the design of HERD.

While prior designs have successfully demonstrated the

benefit of RDMA for memory stores, there are still rooms for

improvement and the combination of HTM and RDMA pro-

vides a new design space. First, prior RDMA-friendly key-

value stores adopt a tightly coupled design, where the design

of data accesses is restricted by the race detection mecha-

nism. For example, to avoid complex and expensive race de-

tection mechanisms, both Pilaf and FaRM-KV only use one-

sided RDMA READ. This choice sacrifices the throughput

and latency of updates to remote key-value pairs, which are

also common operations in remote accesses for distributed

transactions in typical OLTP workloads (e.g., TPC-C).

Second, prior designs have a bias towards RDMA-based

remote operations, which increases the cost of local ac-

cesses as well. The race detection mechanisms (e.g., check-

sums [37] and versioning [21]) increase the pressure on the

system resources (CPU and memory). For example, Pilaf

uses two 64-bit CRCs to encode and decode hash table en-

tries and key-value pairs accordingly for write and read op-

erations. FaRM-KV adds a version field per cache line of

the value for write operations, and checks the consistency

of versions when reading the value. Further, all local oper-

ations, which commonly dominates the accesses, also have
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Figure 9. The detail design of Cluster chaining hash table.

to follow the same mechanism as the remote ones with addi-

tional overhead.

Finally, even using one-sided RDMA operations, access-

ing local memory is still an order-of-magnitude faster than

accessing remote memory. However, there is no efficient

RDMA-friendly caching scheme in prior work for both read

and write operations, since traditional content-based cache

has to perform strongly-consistent read locally. A write op-

eration must synchronously invalidate every caches scattered

across the entire cluster to avoid stale reads, resulting in high

write latency. The cache invalidation will also incur new data

race issues that require complex mechanisms to avoid, such

as lease [55].

Overview. DrTM leverages the strong atomicity of HTM

and strong consistency of RDMA to design an HTM/RDMA-

friendly hash table. First, DrTM decouples the race detec-

tion from the hash table by leveraging the strong atomicity

of HTM, where all local operations (e.g., READ/WRITE/

INSERT/DELETE) on key-value pairs are protected by

HTM transactions and thus any conflicting accesses will

abort the HTM transaction. This significantly simplifies the

data structures and operations for race detection. Second,

DrTM uses one-sided RDMA operations to perform both

READ and WRITE to remote key-value pairs without involv-

ing the host machine5. Finally, DrTM separates keys and val-

ues as well as its metadata into decoupled memory region,

resulting in two-level lookups like Pilaf [37]. This makes it

efficient to leverage one-sided RDMA READ for lookups,

as one RDMA READ can fetch a cluster of keys. Further,

the separated key-value pair makes it possible to imple-

ment RDMA-friendly, location-based and host-transparent

caching (§5.3).

5.2 Cluster Hashing

DrTM uses Cluster chaining instead of Cuckoo [37] or Hop-

scotch [21] due to good locality and simple INSERTwithout

moving header slots. It is because the INSERT operation is

implemented as an HTM transaction and thus excessively

moving header slots may exceed the HTM working set, re-

sulting in HTM aborts. The Cluster hashing is similar to tra-

5 The INSERT and DELETE will be shipped to the host machine using

SEND/RECV Verbs and also locally executed within an HTM transaction

ditional chaining hashing with associativity, but uses decou-

pled memory region and shares indirect headers to achieve

high space efficiency and fewer RDMA READs for lookups.

Figure 9 shows the design of the key-value store, which

consists of three regions: main header, indirect

header and entry. The main header and indirect header

share the same structure of buckets, each of which contains

multiple header slots. The header slot is fixed as 128 bits

(16 bytes), consisting of 2-bit type, 14-bit lossy incarnation,

48-bit offset and 64-bit key. The lossy incarnation uses the

14 least significant bits of the full-size incarnation, which is

used to detect the liveness of entry [53]. Incarnation is ini-

tially zero and is monotonously increased by INSERT and

DELETE within an HTM region, which guarantees the con-

sistency of lossy and full-size incarnations. The offset can be

located to an indirect header or entry according to the type.

If the main header is full of key-value pairs, the last header

slot will link to a free indirect header and change its type

from Entry (T=10) to Header (T=01). The original resident

and new key-value pair will be added to the indirect header.

To achieve good space efficiency, even for a skewed key dis-

tribution, all indirect headers are shared by main headers and

can further link each other.

Besides the key and value fields, the entry contains 32-bit

full-size incarnation, 32-bit version and 64-bit state. The ver-

sion of a key-value pair is initially zero and is monotonously

increased by each WRITE, which is used to decide the order

of updates by applications. For example, DrTM uses it dur-

ing recovery (see §4.6). The state provides locking to ensure

the strong consistency of remote writes for the key-value

pair. DrTM implements an exclusive and shared locks on it

using RDMA CAS (see §4.2).

5.3 Caching

The traditional content-based caching (e.g., replication) is

hard to perform strong-consistent read and write locally,

especially for RDMA. DrTM takes this fact into account

by building location-based caching for RDMA-friendly key-

value stores, which focuses on minimizing the lookup cost

and retaining the full transparency to the host.

Compared to caching the content of a key-value pair,

caching the location (i.e., offset) of the key-value pair (i.e.,

entry) has several advantages. First, there is no need for in-

validation or synchronization on cache as long as the key-

value pair is not deleted, which is extremely rare compared

to the read and write operations. Even if there is a deletion,

DrTM implements it logically by increasing its incarnation

within an HTM transaction. Consequently, it can be easily

detected (e.g., incarnation checking [21]) when reading the

key-value pair via caching and treated as a cache miss with-

out worrying about stale reads. All of them are fully trans-

parent to the host. Second, the cached location of entry can

be directly shared by multiple client threads on the same ma-

chine, since all metadata (i.e., incarnation, version and state)

used by the concurrency control mechanisms are encoded
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Cuckoo Hopscotch Cluster

Uniform

50% 1.348 1.000 1.008

75% 1.652 1.011 1.052

90% 1.956 1.044 1.100

Zipf

θ=0.99

50% 1.304 1.000 1.004

75% 1.712 1.020 1.039

90% 1.924 1.040 1.091

Table 4. The average number of RDMA READs for lookups at

different occupancies.

in the key-value entry. Finally, the size of cached data for

the location-based mechanism (e.g., 16 Bytes) is indepen-

dent to workload and usually much smaller than that of the

key-value pair. For example, a 16MB memory is enough to

cache one million key-value pairs.

The lower-right corner of Figure 9 shows the design

of RDMA-friendly caching, which maps to the key-value

store on a single remote machine and is shared by all client

threads. The location cache adopts the same data structure

as the header bucket and stores almost the same content of

main and indirect headers, which can be seen as a partially

stale snapshot.

The entire header bucket will be fetched when a certain

slot of the bucket is read. The Offset field in the header

slot with Entry type (T=01) can be used to access the key-

value entry through RDMA operations. The cached header

slot with Header type (T=10) can help fetch the indirect

header bucket, skipping the lookup of main header bucket

on the host. After caching the indirect header bucket, the

original Offset field will be refilled by the local virtual

address of the cached bucket and the Type field will also be

changed to Cached (T=11). The following accesses to this

indirect header bucket will do the lookup in local.

The buckets for indirect headers are assigned from a pre-

allocated bucket pool. The traditional cache replacement

policy (e.g., LRU or Reuse Distance) can be used to limit

the size of the cache below a budget. Before reclaiming the

evicted bucket, we first recursively reclaim all buckets on

the chain starting from the evict bucket, and then reset the

header slot pointed to the evicted bucket with the recorded

Offset field and the Header type.

5.4 Performance Comparison

We compare our Cluster chaining hash table (DrTM-KV)

against simplified implementations of two state-of-the-art

RDMA-friendly hash tables in Pilaf [37] and FaRM [21] re-

spectively6. Cuckoo hashing in Pilaf uses 3 orthogonal hash

functions and each bucket contains 1 slot. The bucket size is

fixed to 32 bytes for the self-verifying data structure. Hop-

scotch hashing in FaRM-KV configures the neighborhood

with 8 and stores value (FaRM-KV/I) or its offset (FaRM-

KV/O) in the bucket. The Cluster hashing in DrTM-KV con-

6 As their source code is not publicly available. Our simplified implementa-

tions may have better performance than their original ones due to skipping

some operations.

figures the associativity with 8, and the bucket size is fixed

to 128 Bytes.

All experiments were conducted on a 6-node cluster con-

nected by Mellanox ConnectX-3 56Gbps InfiniBand, with

each machine having two 10-core Intel Xeon processors and

64GB of DRAM7. The machines run Ubuntu 14.04 with

Mellanox OFED v3.0-2.0.1 stack. To avoid significant per-

formance degradation of RDMA due to excessively fetch-

ing page table entries [21], we enable 1GB hugepage to al-

locate physically-contiguous memory registered for remote

accesses via RDMA. A single machine runs 8 server threads

on distinct physical cores of the same socket, and the rest

five machines run up to 8 client threads each. We generate

20 million key-value pairs with fixed 8-Byte keys, occupy-

ing up to 40GB memory. Two types of workloads, uniform

and skewed, are used. Keys were chosen randomly with a

uniform distribution or a skewed Zipf distribution prescribed

by YCSB [17] with θ=0.99.

Since only DrTM-KV implements writes using one-sided

RDMA, our experiment focuses on comparing the aver-

age number of RDMA READs for lookups, as well as the

throughput and latency of read operations. Finally, we study

the impact of cache size on the throughput of DrTM-KV.

Table 4 lists the average number of RDMA READs for

lookups at different occupancies without caching. The re-

sult of Hopscotch hashing in FaRM-KV and Cluster hash-

ing in DrTM-KV is close and notably better than that of

Cuckoo hashing in Pilaf for both uniform and skewed work-

load, since each RDMA READ in Hopscotch and Cluster

hashing can acquire up to 8 candidates, while only one can-

didate is acquired in Cuckoo hashing. The small advantage

of Hopscotch hashing at high occupancy is due to gradually

refining the location of keys and fine-grained space shar-

ing between different keys. Yet, it makes the insertion op-

eration much complicated and hard to be cached. However,

location-based caching can significantly reduce the lookup

cost of Cluster hashing. For example, Cluster hashing with

only 20MB cache can eliminate about 75% RDMA READs

under a skewed workload for 20 million key-value pairs,

even the cache starts from empty.

We further compare the throughput and latency of read

operations on different key-value systems. DrTM-KV dis-

ables cache and DrTM-KV/$ starts from a 320MB cold

cache per machine shared by all client threads. FaRM-KV/I

and FaRM-KV/O put the key-value pairs inside and out-

side their header slots respectively. Figure 10(b) shows the

throughput with different value sizes for a uniform work-

load. Since all of Pilaf, FaRM-KV/O and DrTM-KV need

an additional RDMA READ to read the key-value pair after

lookup, their throughput shows a similar trend. The differ-

ence of their throughput for small value is mainly due to the

difference of lookups cost (see Table 4). Nevertheless, with

the increase of value size, the difference decreases since the

7 Detailed machine configurations can be found in §7.1.
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Figure 10. (a) The throughput of random reads using one-sided RDMA READ with different sizes of payload. (b) The throughput

comparison of read on uniform workloads with different value sizes. (c) The latency comparison of read on uniform workload with 64-
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cost for reading key-value pairs dominates the performance

(see Figure 10(a)). FaRM-KV/I has a quite good through-

put for a relatively small value due to avoiding an addi-

tional RDMA READ, but the performance significantly de-

grades with the increase of value size, due to fetching 8 times

values and poor performance of RDMA READ for a large

payload (see Figure 10(a)). DrTM-KV/$ has the best per-

formance even compared with FaRM-KV/I for small value

size due to two reasons. First, DrTM-KV/$ fetches the en-

tire bucket (8 slots) at a time which increases the hit rate of

location-based cache and decreases the average number of

RDMA READs for lookups to 0.178 even from cold cache.

Second, sharing the cache among client threads further ac-

celerates the prefetching and decreases the average cost for

lookups to 0.024 for 8 client threads per machine. For up to

128-byte value, DrTM-KV/$ can achieve over 23 Mops/sec,

which outperforms FaRM-KV/O and Pilaf by up to 2.09X

and 2.74X respectively.

Figure 10(c) shows the average latencies of three systems

with 64-byte value for a uniform workload. We varied the

load on server by first increasing the number of client threads

per machine from 1 to 8 and then increasing the client ma-

chine from 1 to 5, until the throughout saturated. DrTM-KV

is able to achieve 11.6 Mops/sec with approximately 6.3 μs

average latency, which is almost the same to FaRM-KV/O

and notably better than that of Pilaf (8.4 Mops/sec and 8.2

μs). FaRM-KV/I provides relatively lower average latency

(4.5 μs) but poor throughput (5.6 Mops/sec) due to its de-

sign choice that saves one round trip but amplifies the read

size. DrTM-KV/$ can achieve both lowest latency (3.4 μs)

and highest throughput (23.4 Mops/sec) due to its RDMA-

friendly cache.

To study the impact of cache size, we evaluate DrTM-

KV/$ with different cache sizes using both uniform and

skewed workloads. The location-based cache starts from

empty (/Cold) or after a 10-second warm-up (/Warm). For

20 million key-value pairs, a 320MB cache is enough to

store the entire location information to thoroughly avoid

lookup via RDMA. Therefore, as shown in Figure 10(d), the

throughput of DrTM-KV with warmed-up cache can achieve

25.1 Mops for skewed workload, which is much close to the
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Figure 11. The false abort in transactions due to the softtime.

throughput of one-sided RDMA READ in Figure 10(a) (26.3

Mops). Since skewed workload is more friendly to cache, the

throughput with only 20MB cache still achieves 19.1 Mops.

However, the throughput for uniform workload rapidly drops

from 24.9 Mops to 11.2 Mops when reducing the cache size

from 320MB to 80MB, since it is the worst case and we only

use a simple directly mapping. How to improve the cache

through heuristic structure (e.g., associativity) and replace-

ment mechanisms (e.g., LRU) will be our future work. The

performance of DrTM-KV with cold or warmed-up cache is

close, due to fetching the entire bucket at a time (8 slots) and

sharing the cache among clients (8 threads).

6. Implementation Issues

We have implemented DrTM based on Intel’s Restricted

Transactional Memory (RTM) and Mellanox ConnectX-3

56Gbps InfiniBand. This section describes some specific

implementation issues.

6.1 Synchronized Time

Implementing lease requires synchronized time. Ideally, one

could use the TrueTime protocol in Spanner [18] to get syn-

chronized time, which is, however, not available in our clus-

ter. Instead, we use the precision time protocol (PTP) [1],

whose precision can reach 50μs under high-performance

networking. Unfortunately, accessing such services inside an

RTM region will unconditionally abort RTM transactions.

Instead, DrTM uses a timer thread to periodically update a

global software time (i.e., softtime). This provides an ap-

proximately synchronized time to all transactions.
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The softtime will be read in the remote read and

write in the Start phase, the local read and write in

the LocalTX phase and the lease reconfirmation in the

Commit phase. The later three cases locate inside an RTM

region. They will not directly abort the transaction, but may

result in frequent false conflicts with the timer thread due

to the strong atomicity of RTM (see Figure 11(b)). On the

contrary, as shown in Figure 11(a), a long update interval of

softtime can reduce false aborts due to the timer thread.

However, it also increases the time skew and then increases

the DELTA, resulting in failures when lease confirmation

and thus transaction aborts.

To remedy this, DrTM reuses the softtime acquired

in the Start phase (outside the RTM region) for all lo-

cal read and write operations first, and then only acquires

softtime for lease confirmation (Figure 11(c)). It will

significantly narrow the conflict range of an RTM transac-

tion to the timer thread, since the confirmation is close to

the commitment of an RTM transaction. Further, the local

transactions will never be aborted by timer threads. Note

that reusing stale softtime to conservatively check the

expiration of a lease acquired by other transactions will not

hurt the correctness but only incur some false positives.

6.2 Fallback Handler and Contention Management

As a best-effort mechanism, an RTM transaction does not

have guaranteed forward progress even in the absence of

conflicts. A fallback handler will be executed after the num-

ber of RTM aborts exceeds a threshold. In traditional im-

plementation, the fallback handler first acquires a coarse-

grained exclusive lock, and then directly updates all records.

To cooperate with the fallback handler, the RTM transaction

needs to check this lock before entering its RTM region.

In DrTM, however, if the local record will also be re-

motely accessed by other transactions, the fallback handler

may inconsistently update the record out of an RTM region.

Therefore, we use remote read and write to access the lo-

cal records in the fallback handler. The fallback handler fol-

lows the 2PL protocol to access all records as well. Fur-

ther, to avoid deadlock, the fallback handler should release

all owned remote locks first, and then acquires appropriate

locks for all records in a global order (e.g., using <table id,

key>). After that, the fallback handler should confirm the

validation of leases before any update to the records since

they cannot be rolled back by RTM again. Since all shared

locks are still released in the shrinking phase that no lock

will be acquired, the modification to fallback handler still

preserves the strict serializability of DrTM. Finally, since the

fallback handler will lock all of records and update them out

of the HTM region, DrTM will perform logs ahead of up-

dates for them as in normal systems for durability.

6.3 Atomicity Issues

As mentioned in §4.2, even if RDMA CAS on our Infini-

Band NIC cannot preserve the atomicity with local CAS, it

will not incur consistency issues in the normal execution of

transactions. However, in RTM’s fallback handler and read-

only transactions, DrTM has to lock both local and remote

records. A simple solution is to uniformly use the RDMA

CAS for local records. However, the current performance of

RDMA CAS is two orders of magnitude slower than the lo-

cal counterpart (14.5 μs vs. 0.08 μs). Using RDMA CAS for

all records in the RTM fallback handler results in about 15%

slowdown of throughput for DrTM. It leaves much room

for performance improvement by simply upgrading the NIC

with GLOB-level atomicity (e.g., QLogic QLE series).

6.4 Horizontal Scaling Across Socket

Currently, our B+ tree for ordered store is not NUMA-

friendly and thus has limited scalability across sockets.

Our evaluation using micro-benchmark shows that it stop

scaling after 10 cores (with 3.89X speedup compared to 1

core) and only reaches 2.19X speedup over 1 core using 12

cores (cross sockets); the performance after 12 cores steadily

drops. This is mainly due to excessive cross-socket mem-

ory accesses, which not only incur higher latency, but also

cause contention on a single socket. Currently, we exploit

our NUMA machines by placing a memory store of TPC-C

on each NUMA node. It will be our future work to design

and implement a NUMA-friendly B+ tree.

6.5 Remote Range Query

DrTM only provides an HTM/RDMA-friendly hash table for

unordered stores while still requires SEND/RECV Verbs for

ordered stores. Fortunately, we found that in TPC-C, the only

transaction (i.e., payment) occasionally requiring remote ac-

cesses to an ordered store (for range query) only requires

local accesses to unordered stores. We optimize this case by

sending this transaction to the remote machine hosting the

ordered store. In this way, we convert this transaction to have

local accesses to an ordered store and remote accesses to un-

ordered stores, which can enjoy the full benefit of RDMA.

7. Evaluation

7.1 Experimental Setup

All experiments were conducted on a small-scale cluster

with 6 machines. Each machine has two 10-core RTM-

enabled8 Intel Xeon E5-2650 v3 processors and 64GB of

DRAM. Each core has a private 32KB L1 cache and a pri-

vate 256KB L2 cache, and all 10 cores on a single processor

share a 24MB L3 cache. We disabled hyperthreading on all

machines. Each machine is equipped with a ConnectX-3

MCX353A 56Gbps InfiniBand NIC via PCIe 3.0 x8 con-

nected to a Mellanox IS5025 40Gbps InfiniBand Switch, and

an Intel X520 10GbE NIC connected to a Force10 S4810P

8 Though a recent hardware bug forced Intel to temporarily turn off this

feature on a recent release of processor series, we successfully reenabled it

by configuring some model specific registers.
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Table 5. The transaction mix ratio in TPC-C and SmallBank. d

and l stand for distributed and local. rw and ro stand for read-

write and read-only. The default probability of cross-warehouse

accesses for NEW and PAY in TPC-C is 1% and 15% respectively.

10/40GbE Switch. All machines run Ubuntu 14.04 with Mel-

lanox OFED v3.0-2.0.1 stack.

We evaluate DrTM using TPC-C [51] and SmallBank [3].

TPC-C simulates a warehouse-centric order processing ap-

plication. It scales by partitioning a database into multi-

ple warehouses spreading across multiple machines. Small-

Bank models a simple banking application where transac-

tions perform simple read and write operations on user ac-

counts. The access patterns of transactions are skewed such

that a few accounts receive most of the requests. TPC-C is a

mix of five types of transactions for new-order (NEW), pay-

ment (PAY), order-status (OS), delivery (DLY) and stock-

level (SL) procedures. SmallBank is a mix of six type of

transactions for send-payment (SP), balance (BAL), deposit-

checking (DC), withdraw-from-checking (WC), transfer-to-

savings (TS) and amalgamate (AMG) procedures. Table 5

shows the percentage of each transaction type and its access

pattern in TPC-C and SmallBank. We chopped TPC-C to re-

duce working set while leaving all transactions in SmallBank

unchopped as their working set are already small enough to

fit into RTM with small abort rates.

Cross-system comparison between distributed systems is

often hard due to various setup requirements and config-

urations even for the same benchmark. We use the latest

Calvin [52] (released in Mar. 2015) in a part of experiments

on TPC-C. As Calvin is hard-coded to use 8 worker threads

per machine, we have to skip it from the experiment with

varying numbers of threads. We run Calvin on our Infini-

Band network using IPoIB as it was not designed to use

RDMA.

In all experiments, we dedicate one processor to run up to

8 worker threads. We use the same machine to generate re-

quests to avoid the impact of networking between clients and

servers as done in prior work [52, 54, 57]. All experimen-

tal results are the average of five runs. Unless mentioned,

logging is turned off for all systems and experiments. We

separately evaluate the performance overhead for logging in

section 7.5.

7.2 Performance and Scalability

TPC-C: We first run TPC-C with the increase of machines

to compare the performance with Calvin. To align with the
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Figure 12. The throughput of new-order transaction and

standard-mix in TPC-C with the increase of machines.
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Figure 13. The throughput of new-order transaction and

standard-mix in TPC-C with the increase of threads.

setting of Calvin, each machine runs 8 worker threads and

each of them hosts 1 warehouse with 10 districts. All ware-

houses in a single machine shares a memory store. Fig-

ure 12 shows the throughput of the new-order transaction

and the TPC-C’s standard-mix workload. Note that, in TPC-

C, throughput is defined as how many new-order transac-

tions per second a system processed while the system is ex-

ecuting four other transactions types; Calvin only reported

TPC-C’s standard-mix throughput. As shown in Figure 12,

DrTM outperforms Calvin by up to 21.9X (from 17.9X), due

to exploiting advanced processor features (RTM) and fast

interconnects (RDMA). Even without sophisticated tech-

niques to reduce the contention associated with distributed

transactions, DrTM can still scale well in term of the num-

ber of machines by using our RDMA-friendly 2PL proto-

col. DrTM can process more than 1.65 million new-order

and 3.67 million standard-mix transactions per second (txn-

s/sec) on 6 machines, which is much faster than the result of

Calvin on 100 machines reported in [52] (less than 500,000

standard-mix txns/sec).

Horizontal Scaling: To fully exploit the hardware re-

sources, we run a separate logical node with 8 worker

threads on each socket of a single machine (DrTM(S)). The

interaction between two logical nodes sharing the same ma-

chine still uses our 2PL protocol via one-sided RDMA oper-

ations. DrTM(S) achieves more than 2.48 million new-order

and 5.52 million standard-mix transactions per second on 6

machines (46,000 txns/sec per core).

We further study the scalability of DrTM with the in-

crease of worker threads using 6 machines. As shown in Fig-

ure 13, DrTM provides good scalability up to 8 threads. The

speedup of throughput using 8 threads reaches 5.56X. How-

ever, as our B+ tree is currently not NUMA-friendly and has

poor performance cross sockets, its performance starts to de-
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Figure 14. The throughput of new-order transaction and

standard-mix in TPC-C with the increase of separate logical ma-

chines using fixed 4 threads.
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Figure 15. The throughput of standard-mix in SmallBank with

the increase of machines and threads using different probability of

cross-machine accesses for SP and AMP.

grade after 8 cores. When using two separate logical nodes,

DrTM(S) can further improve the speedup to 8.29X using

16 threads. Note that there is only one data point for Calvin

using 8 threads as it cannot run with other number of threads.

To overcome the restriction of existing cluster size, we

scale separate logical nodes on single machine to emulate

the scalability experiment, each of which has fixed 4 worker

threads. As shown in Figure 14, DrTM can scale out to 24

nodes, reaching 2.42 million new-order and 5.38 million

standard-mix transactions per second.

SmallBank: We further study the performance and scal-

ability of SmallBank with varying probability of distributed

transactions. Figure 15 shows the throughput of SmallBank

on DrTM with the increase of machines and threads. For a

low probability of distributed transactions (1%), DrTM pro-

vides high performance and can scale well in two dimen-

sions. It achieves over 138 million transactions per second

using 6 machines and the speedup of throughput reaches

4.52X for 6 machines and 10.85X for 16 threads respec-

tively. With the growing of distributed transactions, DrTM

still performs stable throughput increase from 2 machines

and scale-well within a single socket.

7.3 Impact from Distributed Transactions

To investigate the performance of DrTM for distributed

transactions, we adjust the probability of cross-warehouse

accesses for new-order transactions from 1% to 100%. Ac-

cording to the TPC-C specification, the default setting is that

there is 1% of accesses to a remote warehouse. Since the

average number of items accessed in the new-order transac-

tion is 10, 10% of cross-warehouse accesses will result in

approximate 57.2% of distributed transactions.
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Figure 16. The throughput of new-order transaction in TPC-C

with increasing cross-warehouse accesses on 6-node cluster using

fixed 8 threads.
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Figure 17. The per-node throughput of micro-benchmarks (read-

write and hotspot transactions) for DrTM w/ or w/o read lease.

Figure 16 shows the throughput of new-order transac-

tion on DrTM with increasing cross-warehouse accesses.

The 100% cross-warehouse accesses results in about 85%

slowdown, because all transactions are distributed and any

accesses are remote ones. Hence, DrTM cannot benefit from

RTM in this case. However, the performance slowdown

for 5% cross-warehouse accesses (close to 35% distributed

transaction) is moderate (15.0%).

7.4 Read Lease

To study the benefit of read lease, we implement two micro-

benchmarks, which share most characteristics with the new-

order transaction but are easier to adjust the execution be-

havior. The probability of cross-warehouse accesses is 10%.

The first simplified transaction, namely read-write, ac-

cesses 10 records and does the original tasks, except that

parts of them will not write back the results, becoming a

read access to that record. We evaluate the throughput of

this read-write transaction on DrTM, as shown in Figure 17.

Without read lease, all remote accesses need to acquire the

exclusive lock of record, regardless of whether the transac-

tion writes the record or not. Thus, the ratio of read opera-

tions has less impact on per-node throughput without read

lease. With the increase of read accesses, read lease exposes

more concurrency and notably improves the throughput.

In the second micro-benchmark, the hotspot transaction

also accesses 10 records and do the original tasks, except

that one of 10 records is chosen from a much small set of

“hot” records and do read. Figure 17 shows the per-node

throughput for this transaction enabling read lease or not.

The 120 hot records are evenly assigned to all machines.

With the increase of machines, the improvement from read

lease increases steadily, reaching up to 29% for 6 machines.
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w/o logging w/ logging

Standard-mix (txn/sec) 3,670,355 3,243,135

New-order (txn/sec) 1,651,763 1,459,495

Latency (μs)

50% 6.55 7.02

90% 23.67 30.45

99% 86.96 91.14

Capacity Abort Rate (%) 39.26 43.68

Fallback Path Rate (%) 10.02 14.80

Table 6. The impact of durability on throughput and latency for

TPC-C on 6 machines with 8 threads.

7.5 Durability

To investigate the performance cost for durability, we eval-

uate TPC-C with durability enabled. Currently, we directly

use a dedicated region of DRAM to emulate battery-backed

NVRAM. Table 6 shows the performance difference on

6 machines with 8 threads. Due to additional writes to

NVRAM, the throughput of the new-order transaction on

DrTM degrades by 11.6% and the rate of capacity aborts and

executing fallback handler increase by 4.42% and 4.78%

respectively. Since DrTM does not use multiple version-

ing [57] or durability epoch [60], as well as only writes logs

to NVRAM in critical path, the increase of latency for 50%,

90% and 99% transactions is lower than 10μs for logging

or not respectively, which is still two orders of magnitude

better than that of Calvin even without logging (6.04, 15.84

and 60.54 ms).

8. Related Work

Distributed transactions: DrTM continues the line of re-

search of providing fast transactions for multicore and clus-

ters [18–20, 42, 52, 54, 58–60], but explores an additional

design dimension by demonstrating that advanced hardware

features like HTM and RDMA may be used together to pro-

vide notably fast ACID transactions with a local cluster.

FaRM [21] also leverages RDMA (but no HTM) to pro-

vide limited transactions support using OCC and 2PC, but

lacks evaluation of general transactions. DrTM steps further

to combine HTM and strict 2PL with a set of optimizations

to provide fast transactions and was shown to orders of mag-

nitude faster than prior work for OLTP workloads like TPC-

C and SmallBank.

Distributed transactional memory: Researchers have

started to investigate the use of transactional memory ab-

straction for distributed systems. Herlihy and Sun [26] de-

scribed a hierarchical cache coherence protocol that takes

distance and locality into account to support transactional

memory in a cluster but has no actual implementation and

evaluation. The hardware limitation forces researchers to

switch to software transactional memory [46] and investi-

gate how to scale it out in a cluster environment [11, 12, 34].

DrTM instead leverages the strong consistency of RDMA

and strong atomicity of HTM to support fast database trans-

actions, by offloading main transaction operations inside a

hardware transaction.

Leveraging HTM for database transactions: The com-

mercial availability of HTM has stimulated several recent

efforts of leveraging HTM to provide database transactions

on multicore [31, 44, 57]. While Wang et al. [57] and Leis et

al. [31] only leverage RTM to implement traditional concur-

rency control protocols (e.g., OCC [30] and TSO [8]), DBX-

TC [44] uses RTM to directly protect the entire transactional

execution. It leverages static analysis and transaction chop-

ping [6, 9, 39, 45, 59] to decompose a large transaction into

smaller pieces with a set of optimizations, which exposes no-

tably more opportunities for decomposition. DrTM extends

it by leveraging RDMA and strict 2PL to support fast cross-

machine transactions.

Lease: Lease [23] is widely used to improve the read per-

formance, which is also used in DrTM to unleash concur-

rency among local and remote readers, as well as to simply

conflict checking for read-only transactions. Megastore [4]

grants a read lease to all nodes. All reads can be handled lo-

cally, while the involved writes invalidate all other replicas

synchronously or just wait for the timeout of the lease before

committing a write. Spanner [18] uses the leader lease [14]

and snapshot reads to save the performance of write by re-

laxed consistency. Quorum leases [38] allow a majority of

replicas to perform strongly consistent local reads, which

substantially reduces read latency at those replicas.

9. Conclusion

The emergence of advanced hardware features like HTM
and RDMA exposed new opportunities to rethink the de-
sign of transaction processing systems. This paper described
DrTM, an in-memory transaction processing system that ex-
ploits the strong atomicity of HTM and strong consistency
of RDMA to provide orders of magnitude higher throughput
and lower latency of in-memory transaction processing than
prior general designs. DrTM was built with a set of optimiza-
tions like leases and HTM/RDMA-friendly hash table that
expose more parallelism and reduced RDMA operations.
Evaluations using typical OLTP workloads like TPC-C and
SmallBank confirmed the benefit of designs in DrTM. The
source code of DrTM will be available at http://ipads.
se.sjtu.edu.cn/drtm.
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