
Rethinking Benchmarking for NVM-based File Systems

Mingkai Dong Qianqian Yu Xiaozhou Zhou Yang Hong Haibo Chen Binyu Zang

Shanghai Key Laboratory of Scalable Computing and Systems

Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

Abstract

Fast, byte-addressable NVM promises near-cache latency

and near memory bus throughput for file systems, which is

evident by recent development of a number of NVM file

systems (NVMFS). However, a key approach to measur-

ing their performance, file system benchmarks, remains un-

changed as those for disk-based file systems (DFS). In this

paper, we analyze the pitfalls of using DFS benchmarks to

evaluate NVMFS and propose several changes to existing

DFS benchmarks to better characterize the performance of

NVMFS.

1. Introduction

NVM technologies such as PCM, STT-MRAM, Memis-

tor, NVDIMM and Intel/Micron’s 3D XPoint will likely

prevail in the near future. Though different in some de-

tails and characteristics, such NVM technologies gener-

ally provide promising features such as byte-addressability,

non-volatility and near-DRAM speed. Such features enable

NVM to revolutionize the storage hierarchy of modern com-

puter systems.

In response to the emergence of NVM technologies, sev-

eral NVM file systems (NVMFS) have been proposed re-

cently to exploit the advanced features of NVM. For exam-

ple, BPFS [1] utilizes a tree-structured file system layout and

a technique called short-circuit shadow paging to provide

atomic, fine-grained updates to NVM; PMFS [2] exploits the

processor’s paging and memory ordering features for opti-

mizations such as fine-grained logging and transparent large

page supports. NOVA [15] adopts the log-structured file sys-

tems and in-DRAM index trees to further improve the file

system performance. Generally, such NVMFS notably out-

perform traditional disk-based file systems in both through-

put and latency.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from Permissions@acm.org.

APSys ’16, August 04-05, 2016, Hong Kong, Hong Kong
c© 2016 ACM. ISBN 978-1-4503-4265-0/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2967360.2967379

However, as a key approach to measuring file system

performance, file system benchmarks remain largely un-

changed. NVMFS designers continuously use file system

benchmarks designed for disk-based file systems (DFS) to

evaluate the performance of NVMFS, which may easily lead

to inaccurate results and/or conclusions.

In this paper, we conduct a measurement study on state-

of-the-art NVMFS using popular DFS benchmarks. We

present an analysis on the results using two standard metrics

of file system benchmarking, i.e., throughput and latency.

Our analysis uncovers several pitfalls of using DFS bench-

marks to evaluate NVMFS, including inaccurate throughput

caused by scalability issues and NUMA unawareness, as

well as imprecise and varied latency.

Based on our analysis, we modify existing DFS bench-

marks to mitigate some of the pitfalls, with the goal of mak-

ing the benchmarks better suit the evaluation of NVMFS. We

also summarize the evaluation results and provide some sug-

gestions to NVMFS designers for more accurate evaluation

results.

The rest of the paper is organized as follow: Section 2

introduces the impact of NVM on the storage hierarchy, the

file systems and the benchmarking means. Section 3 then

presents the evaluation results of NVMFS using DFS bench-

marks, followed by by a summary of the analysis and some

suggestions in section 4. Section 5 discusses the limitations

of this paper and section 6 briefly discusses related work.

Finally, section 7 concluded this paper.

2. What are the Differences?

The emergence of NVM technologies leads to significant

changes on the storage hierarchy, the file system design and

the requirements for benchmarks.

Differences in the storage hierarchy: Disks are usually

treated as a secondary storage in the hierarchy of modern

computer systems. As shown in Figure 1(a), accesses to

disks need to invoke multiple I/O instructions to control the

controllers to transfer the data from/to disks. This process is

often slow due to the slow speed of disks and, especially, the

lengthy seek time.

NVM, however, is a primary storage that can be directly

accessed by the processors. As shown in Figure 1(b), ac-

(a) (b)

Figure 1: Architectures with disks and NVM

cesses to NVM can be simply done by issuing load/store in-

structions similar to accesses to DRAM, which are fast and

in byte-level granularity.

Differences in the file system design: The architectural

differences result in different design considerations for file

systems built on top of them.

Figure 2(a) shows the software stack of DFS. It is note-

worthy that all accesses to the data stored in the disks must

go through the block layer and the device drivers. The block

layer provides the I/O scheduler and the page cache (i.e.,

bcache) which speeds up the read from cached blocks and

helps write coalescence. The device driver layer is required

to transfer data from/to disks. To achieve high performance,

a DFS design tries to reduce the disk I/O as much as possi-

ble (or, at least, reduce random disk I/O by minimizing disk

seeks). Hence, the main prior efforts are focused on delaying

the writes [5, 6], better utilizing the page cache, and adopt-

ing disk-friendly data/metadata management and file system

layout [9, 10].

(a) (b)

Figure 2: Software stacks with DFS and NVMFS

Thanks to the byte-addressability of NVM, NVMFS can

directly access each byte in NVM without block layers or

device drivers as shown in Figure 2(b). This shifts the de-

sign focus on reducing unnecessary NVM writes and expen-

sive persistency operations (e.g. clflush and pcommit). For

example, PMFS [2] condenses the size of inodes to reduce

the writes in journals and NOVA [15] leverages a hybrid of

in-NVM log-structured data/metadata management and in-

DRAM index trees to further eliminate unnecessary writes

and persistency operations.

Different requirements for the benchmarks: The evo-

lution of storage technologies boosts the performance of file

systems, which presents different requirements for bench-

marking file systems.

File system benchmarks designed for DFS usually as-

sume that the file systems have high latency and low through-

put. Thus the efficiency of the benchmark itself is not very

important as long as it does not affect the performance of

evaluated file systems.

However, such an assumption does not hold upon NVMFS.

Benefiting from the near-DRAM speed of NVM, NVMFS

can usually achieve high throughput and low latency so that

a benchmark designed for DFS can easily become the bot-

tleneck in the benchmarking process and thus may report

inaccurate results. Hence, the efficiency and scalability of

the file system benchmark is a key to get accurate results.

3. A Case Study

NVMFS with high throughput and low latency may shift the

bottleneck in the file system benchmarking. In this section,

we conduct a case study by re-evaluating the performance

of state-of-the-art NVMFS using DFS benchmarks (as in

their original papers) and analyze the result to illustrate the

pitfalls.

3.1 Setup

We choose to use PMFS [2] and NOVA [15], two state-of-

the-art open-source NVMFS, to conduct the evaluation. We

also evaluate EXT4 on disks with default mount options (e.g.

ordered mode) to present the different performance trends

between DFS and NVMFS. The DFS benchmark we use is

Filebench 1.4.9.1 [3] and 1.5 [4], which are widely used in

recent NVMFS evaluations [2, 7, 15]. There are four appli-

cation workloads that are frequently used in NVMFS bench-

marking: Fileserver, Webserver, Webproxy and Varmail. In

this paper, we only show the evaluation results of Fileserver,

in which each thread creates a file, writes the whole file, ap-

pends to the file, reads the whole file, and finally deletes the

file. The file is closed after each operation and is opened

again before the next one. The file size follows gamma dis-

tribution with 128K as the mean number. The results of other

three workloads are not shown but our preliminary evalua-

tion shows that the issues shown in this section appear in all

these workloads.

Since the real NVM is not currently available to us yet,

we emulate it using DRAM as other standard practices

(e.g., [8]). Besides, we insert 200 ns delays to emulate the

latency of pcommit instructions and other characteristics re-

main unchanged as DRAM. We further discuss the emulated

characteristics in Section 5.

All evaluations are conducted in Debian 8.4 with Linux

Kernel 4.5.2 running on an Intel machine with two 2.3GHz

Ten-Core Intel Xeon E5 chips equipped with 128GB mem-

ory in which 62GB are used to emulate NVM1.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50

T
hr

ou
gh

pu
t (

10
3 o

ps
/s

)

#Threads

EXT4
PMFS
NOVA

Figure 3: Scalability of Filebench 1.4.9.1

3.2 Throughput and Scalability

To evaluate the throughput and scalability, we run the File-

server workload on PMFS, NOVA and EXT4 with different

numbers of threads. Other configurations remain as default.

We first use Filebench 1.4.9.1 to perform the evaluation

since it is the latest released version and has been used for

many years. The result is shown in Figure 3. Surprisingly, all

these three file systems achieve similar throughput and the

throughput does not scale with increased thread numbers.

We double-check the evaluation and find there are several

scalability issues in Filebench 1.4.9.1.

We then switch to use Filebench 1.5 which is still in

development and re-perform the evaluation. As shown in

Figure 4 (the line indicated by “-nb”), the previous scala-

bility issues seem to have been fixed and there is a huge

performance gap between NVMFS and DFS 2. This makes

sense and matches the speed differences between NVM and

disks. However, by observing the scalability of PMFS and

NOVA, we find the throughput drops after 10 threads, which

is far less than the default thread numbers in the workload.

Thus, if the whole scalability figure is not shown, simply

using the result of default configurations of the workloads

will lead to inaccurate results and makes the comparison

of different file systems unfair. The throughput of on-disk

EXT4 does not drop with the increased number of threads 3.

This further confirms our previous conjecture that the high

speed NVMFS bring anomalies to traditional slow file sys-

tem benchmarks.

1 At first, we use 64G physical memory starting from the 64G-th physical

memory address. However, we find that NUMA node 0 occupies the physi-

cal address from 0 to 66G. In order to arrange all NVM to a single NUMA

node, we start to emulate the NVM from 66G and thus the size is shrank to

62G for simplicity.
2 Filebench 1.5 also improves the performance for each thread.
3 We enlarge the file size to 1M to mitigate the effect of page cache.

We further investigate the reason for the performance

drop and find that the NUMA effect is the chief culprit.

The machine used for evaluation has two NUMA nodes,

and the emulated NVM all reside in NUMA node 1. Thanks

to the kernel NUMA balancer, a thread is more likely to

be scheduled to the NUMA node it frequently accesses,

i.e., NUMA node 1 in this case. Thus, if the number of

threads is small, the NUMA balancer can help to reduce

the number of remote memory accesses and prevent the

cache line bouncing. When the number of threads exceeds

the number of cores in one NUMA node, remote memory

accesses and cache line bouncing are inevitable during the

evaluation, which results in the collapse of the throughput.

Having known the reason, we bind the threads of Filebench

to one NUMA node and perform the evaluation again. The

results are shown in Figure 4 together with the result without

binding (indicated by “-nb”). The line with “-b0” represents

the throughput for binding all threads to NUMA node 0,

and line with “-b1” indicates the result of binding to NUMA

node 1.

It is shown that there is no performance collapse af-

ter the binding. This is because binding all threads to one

NUMA node prevents the cache line bouncing among dif-

ferent NUMA nodes.

Since the emulated NVM is on NUMA node 1, binding

threads to NUMA node 1 achieves better performance than

binding to NUMA node 0.

3.3 Latency

Latency is another important metric for file system bench-

marking. However, evaluating the latency for NVMFS is

more challenging due to the low latency of NVMFS oper-

ations.

By default, Filebench reports the latency in millisecond.

However, NVMFS usually achieves operation latency in

multiple microseconds, which is too small to be measured in

millisecond. Thus we first modify the report unit to make it

more precise before the latency evaluation.

During the modification, we also find that Filebench takes

the time it uses to manage its own metadata into account

when testing the latency of the file systems. These include

some AVL tree operations holding the locks which might be

negligible when evaluating DFS operations but dominates in

NVMFS. To illustrate the effect of such an omission, we re-

fine the Filebench by excluding these irrelevant metadata op-

erations and carry out extra experiments in which ten threads

create, append and then delete files concurrently 4. To ac-

quire a more precise latency, the experiment is repeated mul-

tiple times with different number of operations. The result is

reported in Figure 5, in which “original” indicates the la-

tency of the original Filebench and “refined” shows the la-

tency of the refined Filebench. We can observe that the effect

is significant with respect to the low latency.

4 For simplicity, we only measure the time of creating files.

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50

T
hr

ou
gh

pu
t (

10
3 o

ps
/s

)

#Threads

nb
b0
b1

(a) NOVA

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50

T
hr

ou
gh

pu
t (

10
3 o

ps
/s

)
#Threads

nb
b0
b1

(b) PMFS

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50

T
hr

ou
gh

pu
t (

10
3 o

ps
/s

)

#Threads

EXT4

(c) EXT4

Figure 4: Scalability of Filebench 1.5

 0

 5

 10

 15

 20

 25

 50 100 150 200 250 300 350 400 450 500

La
te

nc
y

(u
s/

op
)

Total Operations (*1000)

refined
original

(a) PMFS

 0

 5

 10

 15

 20

 25

 50 100 150 200 250 300 350 400 450 500

La
te

nc
y

(u
s/

op
)

Total Operations (*1000)

refined
original

(b) NOVA

Figure 5: Latency of default and refined Filebench

 0

 50

 100

 150

 200

 250

 300

 50 100 150 200 250 300 350 400 450 500

La
te

nc
y

(u
s/

op
)

Total Operations (*1000)

(a) PMFS

 0

 1

 2

 3

 4

 5

 6

 7

 8

 50 100 150 200 250 300 350 400 450 500

La
te

nc
y

(u
s/

op
)

Total Operations (*1000)

(b) NOVA

Figure 6: Latency trends without deletion

We then use the refined Filebench to test the latency

of creating files in two approaches. The first approach, the

non-deletion approach, is to continuously create a file and

append 4KB data for 16 times without deletion, thus the

size of the directory keeps increasing during the test. The

second approach, the deletion approach, is to create a file in

an empty directory, append 4KB data for 16 times and then

remove it before creating another file. The deletion approach

aims to measure the shortest time of creating files since this

minimizes the effect of directory organization.

We run these tests using one thread and vary the number

of creations from 1K to 500K to reveal the influence of

testing iterations. The results are shown in Figure 6 and

Figure 7.

 0

 1

 2

 3

 4

 5

 6

 7

 50 100 150 200 250 300 350 400 450 500

La
te

nc
y

(u
s/

op
)

Total Operations (*1000)

(a) PMFS

 0

 2

 4

 6

 8

 10

 12

 50 100 150 200 250 300 350 400 450 500

La
te

nc
y

(u
s/

op
)

Total Operations (*1000)

(b) NOVA

Figure 7: Latency trends with deletion

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 50 100 150 200 250 300 350 400 450 500

La
te

nc
y

(u
s/

op
)

Total Operations (*1000)

(a) PMFS

 0

 0.5

 1

 1.5

 2

 2.5

 50 100 150 200 250 300 350 400 450 500

La
te

nc
y

(u
s/

op
)

Total Operations (*1000)

(b) NOVA

Figure 8: Append latency with deletion

As expected, for the non-deletion approach, the latency

increases with the increasing number of operations as shown

in Figure 6(a). This makes sense since the price of orga-

nizing files in the directory increases when there are more

files. This is evident for PMFS which uses array-based den-

try management. For NOVA (Figure 6(b)), which uses in-

DRAM radix trees to manage a directory, such a latency in-

crease is negligible.

However, in the deletion approach (Figure 7), the latency

is high when tested with less operations and it drops with the

increase of total operation numbers. This is because the la-

tency of NVMFS is so low that it can be easily disturbed.

With the increase of tested operations, the disturbance is

gradually eliminated from the average. The latency for ap-

pend (shown in Figure 8) presents the same trend.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5 10 15 20 25 30

C
ou

nt
 *

10
3

Latency (us)

>30:2

(a) 1K operations

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30

C
ou

nt
 *

10
3

Latency (us)

>30:82

(b) 500K operations

Figure 9: Latency distributions for PMFS

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 5 10 15 20 25 30

C
ou

nt
 *

10
3

Latency (us)

>30:2

(a) 1K operations

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 5 10 15 20 25 30

C
ou

nt
 *

10
3

Latency (us)

>30:207

(b) 500K operations

Figure 10: Latency distributions for NOVA

When we conduct the evaluation for latency, we find

that although the latency always decreases in one run, it is

unstable across different runs.

Figure 9 and Figure 10 show the distributions of latency

of creating files for PMFS and NOVA respectively in one run

of the deletion approach. The notation in the right bottom

corner presents the number of operations that takes longer

time than 30 us.

We choose two scenarios to show the distribution, one

with 1K operations, the other 500K.

In the 500K scenario, the average latency is more concen-

trated and shorter than that in 1K scenario. In both scenarios,

latency varies greatly, from a few microseconds to thousands

of microseconds.

We end this section by summarizing the modifications in

Filebench during the evaluation.

• We add options to the Filebench workloads to bind all the

threads to specific NUMA nodes or CPUs to evaluate the

influence of NUMA.

• We reformat the output of the Filebench to report the

latency in higher precision for NVMFS.

• We remove Filebench metadata operations from the la-

tency measurement to make the benchmarking much

more precise.

4. Summary and Suggestions

In this section, we summarize the pitfalls of benchmarking

NVMFS using DFS benchmarks and give some suggestions

for future works.

4.1 Summary

With the memory hierarchy goes up, we need to rethink the

benchmark design for NVMFS.

Scalability dominates. DFS benchmarks seem not to

have paid much attention to the scalability of the benchmark

itself, since DFS are often the bottleneck and the scalabil-

ity of benchmarks does not matter. This might explain why

Filebench 1.4.9.1, which has severe scalability issues, has

been frequently used for a long time. The emergence of high

speed NVMFS raises higher requirements for the bench-

marking that the scalability of benchmarks should not affect

the evaluation results, which most of current DFS bench-

marks will do. More efforts are needed in either optimizing

existing DFS benchmarks to suit NVMFS benchmarking or

designing new benchmarks for NVMFS.

NUMA matters. Benchmarks designed for DFS do not

need to consider the influence of NUMA since it barely

affects the evaluation result. However, in the benchmarking

of NVMFS, the influence of NUMA is significant as shown

in Section 3.

Latency varies. Previous work has pointed out that the

working set size impacts the latency significantly [12]. The

precondition is further released for NVMFS. Even with the

same workload, the latency can vary a lot in one run. It’s

more difficult to measure the low latency of NVMFS pre-

cisely since a subtle disturbance will affect the latency sig-

nificantly. One possible solution is to iterate the test more

times to expect the latency to get stable. This works in some

of the tests, but is not feasible for more complex evaluations

such as the impact of directory structures.

4.2 Suggestions

We suggest that NVMFS benchmarks should be designed

and implemented with great care. Different factors, such as

NUMA, scalability, and the low latency of NVMFS should

be taken into consideration. In the workload design, some

other metrics, such as NUMA-friendliness and latency with

high precision, that are meaningless and often ignored in

DFS should also be measured for NVMFS.

For the designers of NVMFS, if the DFS benchmarks are

used to evaluate NVMFS, we strongly recommend testing

more aspects to make sure that the DFS benchmarks are not

the bottlenecks and the results reflect the true performance of

NVMFS. For example, we recommend to present the whole

scalability figure rather than the throughput of a fixed num-

ber of threads. If there are scalability issues, the possible

reasons might be the scalability of the benchmark itself and

cache line bouncing among NUMA nodes. When the latency

is evaluated, multiple runs are needed to get a relatively ac-

curate latency for NVMFS. Besides, as mentioned in previ-

ous work [12], the average latency sometimes is not a good

metric to reflect the true latency. Hence, we encourage the

designers to report a histogram of latency distribution.

5. Limitation and Discussion

Other NVM characteristics: There are some other char-

acteristics of NVM that are different from DRAM, includ-

ing extra write latency, lower bandwidth and endurance is-

sues. These characteristics are not emulated in this paper for

two reasons. First, these characteristics vary among differ-

ent NVM techniques and thus a simple emulation according

to one specific NVM technique does not help in general-

ity. Secondly we do not have the real NVM available and

emulating some of these characteristics is difficult without

special hardware platforms. Nevertheless, we do think these

characteristics are important in the evaluation of NVMFS

and thus, if possible, should be considered and evaluated in

the benchmarking.

Other dimensions of file system benchmarking: As

described in previous work [12], there are many dimensions

in the benchmarking of file systems. Although not all these

dimensions are covered in this paper, we believe that this

paper is conducive to the benchmarking and development of

other dimensions.

File systems, benchmarks and applications: The rela-

tionships among the file systems, benchmarks and real appli-

cations are interesting. File systems are designed according

to the requirements of the applications, which are indirectly

reflected by some of the benchmarks. Benchmarks, which

are bonds between file systems and applications, need to

both expose the different characteristics among file systems

and mimic the behaviour of real applications to provide an

approximation of performance in real product environments.

The applications, to achieve better performance, might ad-

just their logic to suit the characteristics of underlaying file

systems exposed by the results of benchmarking. These three

influence and promote each other and a change in file sys-

tems will be reflected in benchmarks and applications.

6. Related Work

To the best of our knowledge, this is the first paper to discuss

NVMFS benchmarking using DFS benchmarks. However,

benchmarking of traditional file systems has been discussed

for a long time. Tang et al. [11] criticizes the file system

benchmarks used in 1994. Traeger et al. [14] discusses the

difficulties in benchmarking the file systems and introduces

benchmarks, industry experiences and benchmarking guide-

lines at that time. Traeger et al. [13] surveys 415 file sys-

tem and storage benchmarks from 106 papers and finds that

most popular benchmarks are flawed and many papers fail to

provide true performance. The authors also provide guide-

lines to improve future performance evaluations. Tarasov et

al. [12] proposes several dimensions of file system bench-

marking and reviews widely used benchmarks. A conclusion

is drawn by experiments that many benchmarks can be frag-

ile and produce inaccurate results.

7. Conclusion

This paper analyzed the pitfalls of using DFS benchmarks

to evaluate NVMFS and concluded that as the memory hi-

erarchy goes one level up, we need to rethink the bench-

marking for NVMFS. Based on the analysis, this paper pro-

posed and evaluated several changes to existing DFS bench-

marks to better characterize NVMFS. Besides, this paper

also provided suggestions to help improve the evaluation of

NVMFS.

Acknowledgements

We thank Jian Xu from UC San Diego for pointing out

the scalability issue of Filebench 1.4.9.1 and suggesting

the development version. We also thank our shepherd Jian

Ouyang and the anonymous reviewers for their insightful

comments and suggestions. This work is supported in part by

China National Natural Science Foundation (61572314), the

Top-notch Youth Talents Program of China, Zhangjiang Hi-

Tech program (No. 201501-YP-B108-012), and Singapore

NRF (CREATE E2S2).

References

[1] CONDIT, J., NIGHTINGALE, E. B., FROST, C., IPEK, E.,

LEE, B., BURGER, D., AND COETZEE, D. Better i/o through

byte-addressable, persistent memory. In Proceedings of the

ACM SIGOPS 22nd symposium on Operating systems princi-

ples (2009), ACM, pp. 133–146.

[2] DULLOOR, S. R., KUMAR, S., KESHAVAMURTHY, A.,

LANTZ, P., REDDY, D., SANKARAN, R., AND JACKSON, J.

System software for persistent memory. In Proceedings of the

Ninth European Conference on Computer Systems (2014).

[3] Filebench-1.4.9.1. https://sourceforge.

net/projects/filebench/files/filebench/

filebench-1.4.9.1/, 2011.

[4] Filebench-1.5. https://sourceforge.net/p/

filebench/code/ci/filebench-1.5/tree/, 2015.

[5] GANGER, G. R., MCKUSICK, M. K., SOULES, C. A., AND

PATT, Y. N. Soft updates: a solution to the metadata update

problem in file systems. ACM Transactions on Computer

Systems (TOCS) 18, 2 (2000), 127–153.

[6] GANGER, G. R., AND PATT, Y. N. Metadata update per-

formance in file systems. In Proceedings of the 1st USENIX

conference on Operating Systems Design and Implementation

(1994), USENIX Association.

[7] OU, J., SHU, J., AND LU, Y. A high performance file system

for non-volatile main memory. In European Conference on

Computer Systems (2016).

[8] How to emulate persistent memory. http://pmem.io/

2016/02/22/pm-emulation.html, 2016.

[9] RODEH, O., BACIK, J., AND MASON, C. Btrfs: The linux

b-tree filesystem. ACM Transactions on Storage (TOS) 9, 3

(2013), 9.

[10] ROSENBLUM, M., AND OUSTERHOUT, J. K. The design

and implementation of a log-structured file system. ACM

Transactions on Computer Systems (TOCS) 10, 1 (1992), 26–

52.

[11] TANG, D., AND SELTZER, M. Lies, damned lies, and file

system benchmarks. Tech. rep., Technical Report TR-34-94,

Harvard University, 1994.

[12] TARASOV, V., BHANAGE, S., ZADOK, E., AND SELTZER,

M. Benchmarking file system benchmarking: It* is* rocket

science.

[13] TRAEGER, A., ZADOK, E., JOUKOV, N., AND WRIGHT,

C. P. A nine year study of file system and storage bench-

marking. ACM Transactions on Storage (TOS) 4, 2 (2008),

5.

[14] TRAEGER, A., ZADOK, E., MILLER, E. L., AND LONG,

D. D. Findings from the first annual file and storage systems

benchmarking workshop. In Initial workshop report (2008),

vol. 6, Citeseer.

[15] XU, J., AND SWANSON, S. Nova: A log-structured

file system for hybrid volatile/non-volatile main memories.

In USENIX Conference on File and Storage Technologies

(2016), pp. 323–338.

