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Abstract

Recent decentralized services such as Steemit and Open-
Bazaar have emerged to provide accountable social media
and online e-commerce. However, despite being decentralized
themselves, they still rely on a centralized or an insecure dis-
tributed search engine for end-user navigation, which makes
such services vulnerable to censorship and privacy violation.

This work presents DESEARCH, the first decentralized
search engine that guarantees the integrity and privacy of
search results for decentralized services. DESEARCH uses
trusted hardware to build a network of pipelined lambdas, an
enclave primitive for a small piece of outsourced job. Since
each lambda only has a local view, DESEARCH introduces
a novel witness mechanism that implies the transitivity of
lambdas to make this decentralized model externally verifi-
able. DESEARCH enables fast verification for queries and can
tolerate decentralized failures. We implement a DESEARCH
prototype for a decentralized social media and online market.
Evaluation shows that DESEARCH can scale horizontally in
a decentralized environment and support 32 million requests
per day on a 234 GB real-world dataset with 82M documents.

1 Introduction

Most of today’s online services—including search, social net-
works, and e-commerce—are centralized for reasons such
as economies of scale, compatible monetization strategies,
network effects, legal requirements, and technical limitations.
Yet, since the birth of the Internet, there have been periods of
intense interest in decentralization, including the peer-to-peer
systems bonanza of the early and mid 2000s [56, 89, 106] and
the current blockchain boom [38, 94, 116]. A rich set of de-
centralized services have appeared and are able to offer most
of the functionalities that common centralized online services
provide, as listed in Figure 1. Proponents of decentralization
argue that centralized services often employ anti-consumer
practices owing to their monopolistic positions [18, 27], and
the mismatch between users’ expectations and operators’ in-
centives [43]. Further, centralized services are particularly sus-
ceptible to censorship [5, 40] (either self-imposed or coerced
through technical or legal means) and collect vast amounts of
user information [12, 13].

State-of-the-art. While the idea of building fully decentral-
ized services is alluring, developers must currently make a
significant compromise: they must defer search functional-
ity to a centralized service. For example, OpenBazaar [28]
makes a strong case for a decentralized marketplace, but
users must use a centralized search engine such as Bazaar
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Service Centralized Decentralized
Currency U.S. Dollars Bitcoin [94]
Online Marketplace eBay OpenBazaar [28]
Social Media Twitter Steemit [39]
Video Sharing Youtube DTube [9]
Social Network Facebook Mastodon [15]
Public Storage DropBox IPFS [58]
Messaging Slack Matrix [25]
Video Conference Zoom Zipcall [49]
Website Hosting WiX [46] ZeroNet [48]
Financial Betting Etoro [11] Augur [2]
Supercomputing Titan [44] Golem [17]

Document Collaboration Google Docs Graphite [21]

FIGURE 1—Centralized services and decentralized alternatives.

Dog [45] or Duo Search [10] to discover what items are for
sale in the first place. A similar compromise is made by other
popular services [9, 15, 28, 39, 48]. This state of affairs is
problematic because search is not an optional feature but
rather a core component of these systems. Without decentral-
ized search, the purported goals of anti-censorship is hard to
attain: the search engine could trivially track users’ queries,
and opaquely censor particular content [4, 5, 8, 30, 40]. For
example, Steemit [39] is a decentralized social media service
where posts are stored on the public Steem blockchain [38],
but Steemit developers can prevent users’ posts from appear-
ing on the front end [40].

Prior Proposals. Several search engines [29, 80] propose
reaching consensus amongst replicas to ensure the correctness
of search indexes. However, these engines rely on a central
website hosted at the third party to answer queries. As a result,
an end-user who visits this website has no way to validate
the integrity of the displayed results, or to determine whether
there are missing entries (known as “search poisoning” [32]).
As an alternative, peer-to-peer-based search engines [24, 47]
allow shared indexes between peers and queries can be issued
to any peer (essentially implementing a distributed hash table).
However, these engines do not support verifiable indexes, and
allow peers to monitor clients’ requests, leading to severe
privacy concerns.

Challenges. Building a decentralized search engine that
avoids the aforementioned shortcomings is far from trivial.
First, the search engine should be able to authenticate the
data source to make sure the dataset is complete and has not
been fabricated by any parties. Second, the user’s intention,
including the query keywords and search results, should be
kept private from any party. Third, the search engine should



be able to provide a proof of execution to clients that explains
how the search results were generated, and why the results are
complete and have integrity. Last, the search engine should
have reasonable costs and scale to support many users.

DESEARCH. To address these challenges, this paper intro-
duces DESEARCH, the first decentralized search engine that
allows users to verify the correctness of their search results,
and preserves the privacy of user queries. DESEARCH out-
sources fragments of search tasks such as crawling, indexing,
aggregation, ranking, and query processing to trusted execu-
tion environments (TEEs) running on untrusted nodes that
create a decentralized network, and introduces new data struc-
tures and mechanisms to meet search integrity and privacy.

First, since each executor only has a local view of the
computation, DESEARCH uses witnesses, which are a new
type of object that reflects the dataflow and establishes the
correctness and completeness of results. A witness ensures
that executors cannot lie about which sites they crawled, how
they aggregated data, computed the index, or responded to
a query. Verifying witnesses is not cheap in DESEARCH,
so DESEARCH amortizes the verification cost by reusing
previously checked witnesses across queries, using designated
nodes—uverifiers—to verify witnesses on behalf of clients.

Second, DESEARCH introduces a public storage service,
called Kanban, which is only trusted for availability. Kanban
allows nodes in the network (or “executors”) to exchange in-
termediate information, agree on a snapshot of data in the sys-
tem, manage node membership, tolerate faults, and perform
data transferring and result verification. To detect rollback
on Kanban data, DESEARCH summarizes an epoch-based
snapshot and stores it on an append-only distributed ledger.

Finally, DESEARCH protects the privacy in the query phase
with two techniques. To prevent leaks from access patterns,
DESEARCH adapts an existing oblivious RAM library [99].
To resist frequency and volume side channels, DESEARCH
returns the same amount of data for search queries. It does so
by equalizing the lengths of all result entries. This approach
does not reduce the performance or quality of the service
because search engines need not display all of the content
but rather a small snippet. As an analogy in the Web context,
search engines like Google do not display the entirety of a
Web site’s content in the search result; instead, they typically
display the URL of each site and a small text snippet.

We have built a prototype of DESEARCH in 5, 700 lines
of C++ and 1, 900 lines of Python, and adapt it to work with
Steemit (a decentralized social media service), and Open-
Bazaar (a decentralized e-commerce service). We deploy DE-
SEARCH on a cluster of machines in the wide-area network
that allows us to vary network latency and kill executors
throughout our experiments to simulate a realistic decentral-
ized environment. The results of our experiments show that
DESEARCH scales well as more executors join the network,
and can handle at least 32 million requests per day using 15

TEE-enabled machines. For each request, users can quickly
verify the displayed results within 1.3 second by consulting
dedicated verifiers in DESEARCH, while users themselves
can verify results on their own in 20.5 minutes.

To summarize, the contributions of this paper are:

* The design of DESEARCH, the first decentralized search
engine that allows any client with a TEE to join and pro-
vide search functionality for decentralized services.

* A witness mechanism that organizes verifiable proofs from
short-lived executors to form a global dataflow graph.
Through these witnesses, DESEARCH offers fast verifi-
cation for search queries.

* A prototype of DESEARCH built for Steemit [39] and
OpenBazaar [28], and an evaluation of DESEARCH’s per-
formance and scalability.

While DESEARCH enables, for the first time, scalable, ver-
ifiable and private search for existing decentralized services,
it is not a viable replacement for traditional Web search en-
gines (e.g., Google). Besides the obvious issue of scale, DE-
SEARCH’s target applications expose a single source of data
(their underlying distributed ledger or proof of storage mecha-
nism), which gives DESEARCH an anchor for its witness data
structure. In contrast, the Web has no such single ledger-like
mechanism, which would prevent DESEARCH from proving
that all Web pages had been crawled and indexed. Neverthe-
less, we believe DESEARCH fills a crucial void in existing
decentralized services.

2 Problem Statement

This section describes our target setting, the motivation behind
our work, threat model, and potential solutions that fall short.

2.1 Decentralized Search

Consider a decentralized system setup, where many volun-
teers (called executors) together run a search engine.

Users want to perform search on source data using some
search algorithm. Both the source data and the search algo-
rithm are public and accessible to all users. For each search,
a user sends keywords to the search algorithm and expects
a search result—an ordered list of pointers to source data.
Multiple executors run the search algorithm. In the context of
decentralized systems, executors are owned by different and
possibly adversarial entities.

After receiving the search results, users want to verify that
they are correct—the results are derived from the keywords
and the search algorithm on the source data. Users also want
to keep their searches private. In detail, the challenge is to
design a decentralized search engine that meets these goals:

* Integrity: the search engine should guarantee the results
are generated from the desired dataset and expected algo-
rithms. We seek two properties: (1) Soundness, meaning
that the search process is faithfully executed, in the sense
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FIGURE 2—Comparison between prior work and DESEARCH. X-
Search [92] obfuscates query keywords but does not hide them.
Rearguard [107] hides the index size but not the result size. Dory [69]
only considers the search index but not file retrieval.

that none of the returned results is a forgery, and their order
is correct. (2) Completeness, meaning that no legitimate
results that satisfy the search conditions are missing or
hidden, which prevents (undetectable) censorship.

Privacy: the search engine should prevent user keywords
and search results being revealed to any third party. The
system should protect the following aspects of informa-
tion: (1) Content: the data being searched and query key-
words submitted are not visible to an external observer.
(2) Volume: any messages transferred are independent of
the searched dataset and query keywords.

Decentralization: A decentralized system must allow ex-
ecutors to freely join and leave the system. And newly
joined executors must contribute meaningfully towards the
system’s scalability: more decentralized executors should
help the search engine process more search requests.

Figure 2 shows existing decentralized or private search
engines. None of them meets all three desired goals.

2.2 Motivation

Below, we describe some popular decentralized services and
the problems they encounter.

Social Media. Steemit [39] is a social media platform
that stores user-generated contents on the public Steem
blockchain [38]. Although the raw data from the blockchain
is tamper-proof, Steemit’s frontend servers can manipulate
the search results before delivering them to users [40]. One
can think of these services as centralized curators for decen-
tralized storage. These servers also know who searches for
what, which may reveal personal interests and preferences.

Marketplaces. OpenBazaar [28] is a decentralized e-
commerce marketplace built on top of a peer-to-peer network
and storage. To help users search for items, OpenBazaar pro-
vides an API [6] for third-party search engines to crawl and

index items. But existing search engines [3, 10, 33, 45] are
opaque; they can bias results towards item listings that bene-
fit them financially. For example, a listing owner could pay
the search engine to promote its listing or hide other listings.
Additionally, these engines can learn users’ purchasing habits
(and other information) from keywords and search histories.

In short, existing decentralized services currently lack
trusted search that offers integrity and privacy. A decentral-
ized search engine should have strict requirements on whether
the content is faithful, how the results are generated, and who
can see the final results. In Section 3, we show that DE-
SEARCH can satisfy all of these requirements. Below, we
discuss possible approaches to solve the above issue.

2.3 Some Potential Approaches

How to provide integrity and/or privacy for an execution (for
example, search) has been examined broadly. We list some
approaches below (see more in Section 10).

Replication such as PBFT [65] and Ethereum [116] is one
approach to build systems that can guarantee execution in-
tegrity within a given number of (Byzantine) faults. However,
it requires performing the computation multiple times and
traditional replication protocols do not provide privacy.

Another line of work [97, 102, 112] uses cryptography—
such as fully homomorphic encryption (FHE) [72], secure
multi-party computation (MPC) [119], and verifiable com-
putation (VC) [60, 95, 103]—to provide execution integrity
and/or privacy. Though promising, it remains an open prob-
lem to build a system that can support a large-scale dataset
like today’s decentralized services.

Trusted execution environments (TEE) provide another
approach to build systems that protect a sensitive execution
from being tampered with or eavesdropped. However, exist-
ing TEEs either (1) have limited private memory (128 MB
per node); (2) lack memory encryption [54] which makes
them vulnerable to physical attacks that are realistic in a
decentralized setting; or (3) are susceptible to memory tam-
pering [53, 83]. Although newer generation of TEE [42] has
expanded the enclave memory to 1TB, it relaxed its security
guarantees (e.g., subject to physical replay attacks) owing to
the loss of integrity tree protection. Prior distributed frame-
works like VC3 [101] and Ryoan [75] address many of the
above shortcomings but are not designed for a decentralized
environment. Amongst related work, Dory is the most relative
work which offers encrypted search over a file-sharing system.
Dory on its own provides oblivious data retrieval based on
given keywords, but excluding privacy protection for relevant
candidatas ranking and top-k results returning, which are also
the essential functions for private search.

DESEARCH uses a hybrid approach—a combination of
TEEs, our epoch-based Kanban storage service, authenticated
data structures (hash trees), and oblivious RAM—to address
the challenges described in Section 2.1.



2.4 Threat Model

DESEARCH assumes a decentralized network where untrusted
executors are operated by unknown parties, but are equipped
with TEE. We assume reliable TEEs with no analog side chan-
nels [62, 111] or vulnerabilities to voltage changes [93]. We
also assume the TEE manufacturers do not inject backdoors
into TEEs, or shares their private keys. The remote attestation
mechanism of the TEE works as intended.

In DESEARCH, executors join the system and volunteer
their TEE (or they are paid or incentivized to do so, which
is orthogonal). Executors can be arbitrarily malicious: they
can deny services, sabotage the integrity of the inputs that go
into the TEE and the outputs that come out of the TEE. They
can corrupt data in unprotected memory, or load software
that is not DESEARCH’s into the TEE. They can even replay
inputs/outputs. Moreover, executors can launch attacks by
observing memory accesses and I/O patterns [63, 118] (ei-
ther which memory is accessed or how much data’/how many
times) and DESEARCH must address them.

DESEARCH’s goal is search. So we assume the source of
data is correct. For concreteness, DESEARCH assumes the
data is kept in a blockchain. This assumption boils down to:
the blockchain has its own mechanisms to ensure the data
introduced is not removed or tampered with.

The storage service, named Kanban, is fully untrusted. We
only require for its availability. It can modify or forge the con-
tent of data, lie about data not being present, or drop messages
between executors. At worst, Kanban can make DESEARCH
unavailable but cannot cause DESEARCH to return incorrect
responses to clients or learn a user’s private query.

Finally, we assume a computationally bounded adversary
that cannot break standard cryptographic assumptions (e.g.,
Diffie Hellman or RSA assumptions used in TLS).

3 System Overview

Challenges. Building a decentralized search engine that
meets our requirements (§2.1) presents several challenges
that stem from the decentralized environment, the limitations
of today’s TEEs, and the dynamic nature of search. First,
decentralization requires executors to freely participate and
depart (§2.1), which means that executors might be offline
unexpectedly. Thus, a standard search engine design with
long-running tasks and stateful components is unfavorable,
as one executor’s leaving can heavily impact the service.
Second, today’s SGX instances have limited memory
(128MB or 256MB); working sets in excess of this limit
require expensive paging mechanisms. We hypothesize that
the latency incurred by paging in practice will exceed what is
acceptable for a user-facing service like search. To confirm
this, we run a search serving component for Steemit (having
31.2GB indexes) in a single SGX instance with reasonable
optimizations. It takes the instance 16 (and 65) seconds to
respond to a single-keyword (and two-keyword) query. As

Kanban (epoch 1)

Executors

Crawlers
Indexers

Rtk
: Request " !

R s
| Response |

1

1

Data
Source

Kanban (epoch ...)

Kanban (epoch N)

Generated by
executors

Private Domain

Verify

FIGURE 3—DESEARCH’s architecture. DESEARCH obtains raw
data from public decentralized services (e.g., Steem blockchain)
as the data sources, and stores the intermediate data (i.e., items
and indexes) on Kanban, a public append-only storage that creates
snapshots periodically. DESEARCH executors generate witnesses
along with the search pipeline. Privacy (§2.1) is offered for users in
the query phase (within the dashed rectangle).

a result, it is a necessity that the search’s functionality be
split into small tasks that are processed by SGX instances in
parallel to achieve acceptable latency.

Third, search services are dynamic, and it is hard to track
and verify the whole search process. In particular, a search
engine is unable to plan a computation graph (like in big-
data [71, 101, 112] or machine-learning [78, 86] systems) as
the arrival of new source data or user queries is unpredictable.
Therefore, it is unclear how to verify one executor’s behavior
because its “valid” data dependencies are unspecified a priori.

To address these challenges, DESEARCH decomposes a
search into a pipeline of short-lived tasks where each executor
is only responsible for one task at a time and on a portion of
data. Executors are stateless. They fetch inputs and write out-
puts from and to a storage service named Kanban. Kanban is
a cloud-based key-value store that provides high-availability,
and data integrity, completeness, and freshness (§5).

To track the completion of the dynamically executing tasks
within the search process, DESEARCH uses witnesses (§4),
which are cryptographic summaries establishing the transfer
of data among executors. A witness is also a proof of an
executor’s behaviors, which allows users to verify their search
results ex post facto.

Figure 3 shows the architecture of DESEARCH.

Executors and Kanban. In DESEARCH, executors are cat-
egorized into four roles: crawlers, indexers, queriers, and
masters (for simplicity, masters are omitted in Figure 3). The
first three roles comprise a full search pipeline—crawlers
fetch data from public sources (for example blockchain [38,
94, 116] or P2P storage [28, 58]); indexers construct inverted
indexes; queriers serve users search requests.

Instead of point-to-point communication, executors in the
pipeline communicate through Kanban. Kanban also stores
the data (items, indexes, and witnesses) generated by ex-
ecutors, and provides data integrity (but not confidentiality)
by periodically creating snapshots of all current state and



committing a digest of the snapshot to a public ledger (e.g.,
Ethereum [116] or Steem [38]). We call the time between two
consecutive snapshots an epoch; for simplicity, we also use
epochs to represent the corresponding snapshots (the data).

For privacy (§2.1), DESEARCH comprises public and pri-
vate domains. Executors in the public domain access public
data (like public source data) and produce shared information
(like indexes). On the other hand, users’ interactions with
DESEARCH happen in the private domain, and their commu-
nications (for example, search requests and responses) are
encrypted and kept secret.

Masters are the leader executors that serves three jobs in
DESEARCH: (1) a membership management service that al-
lows a node with TEE power to register itself to provide
decentralized search; (2) a key management service (KMS)
that allows anyone to identify if an executor is a legitimate
DESEARCH member; (3) a job assignment service that coor-
dinates the independent executors to form the search pipeline
with minimal repeated work. In terms of membership, masters
manage the process by which new executors join DESEARCH
and authenticate that these executors are indeed TEEs running
the correct software via remote attestation. If the attestation
passes, masters assign a role (for example, crawler) to the
newly joined executor. In terms managing the KMS, masters
periodically (in the beginning of an epoch), release a list of
public keys from legitimate executors so that users can verify
their signatures and communicate with them. Masters also
hold the root key that serves as the identity of the DESEARCH
system, allowing the public to recognize DESEARCH. We
describe how the system is bootstrapped, how new masters
join, and how the root key is generated in § 9.

Workflow. DESEARCH’s executors perform an ordinary
search pipeline—crawling, indexing, and serving queries.
Along every step of the pipeline, each executor generates
a witness, a proof of what the executor has done and how data
has been transferred. We discuss witnesses in Section 4.

To conduct a search, a user first retrieves a list of active
queriers. This list is maintained by both masters and queriers:
queriers update their status on the list with signed proofs
specifying that they have seen the most-recent epoch; the
legitimacy of the status proofs is verified by masters. Users
know this by checking that the list is signed by masters.

With the active querier list, the user randomly selects one
as the leader, and sends (encrypted) search keywords to the
leader. The leader then seeks more peer queriers to collec-
tively handle the request. That is, different queriers have dif-
ferent portions of indexes and together serve one user search
request. The leader finally aggregates results by ranking on
relevance, and returns to the user a list of the most relevant
items. One item comprises a link (to the original content) and
a content snippet that contains the searched keywords.

Together with the search results, the user also receives wit-
nesses from queriers. The witnesses produced by the search
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FIGURE 4—A verifiable lambda is composed of three intra-enclave
sandboxes. The function box is one of: crawling, indexing, and query-
ing. The witness;,, contains the hash for inputs and is from prior
lambdas. The witness,.: is the witness generated by this lambda.
Three-sandbox is is necessary for witnesses as it isolates the witness
processing from the function execution. This is vital for DESEARCH
because the buggy or malicious function cannot tamper with the
integrity of witness.

pipeline (all of them) form a witness tree, which users can
verify by starting from the witnesses received from the leader
querier, traversing the tree, checking every node (witness),
and confirming that the search has been correctly executed.
We discuss this in Section 4.

4 Verifiable Search

In DESEARCH, search functions are outsourced to indepen-
dent executors controlled by a number of individuals in a
decentralized environment. Data are partitioned across execu-
tors. As a result, an executor can only have a local view of its
own computation, and cannot guarantee the integrity of the
entire search pipeline, even though they are fully protected
with TEE. Specifically, to guarantee integrity (§2.1), there are
two main challenges: (a) how to guarantee that the results are
generated by the correct algorithm without being tampered
with (Soundness), since the intermediate data are transferred
amongst different executors on untrusted channels.and (b)
how to ensure that the results are derived from the complete
dataset without missing any data (Completeness).

To address the above two challenges, DESEARCH intro-
duces verifiable lambda and witness for challenge (a), and
Kanban with epochs for challenge (b). We detail them below.

Verifiable Lambda and Witnesses. As stated earlier (§3),
DESEARCH splits a search pipeline into small tasks. Each
task is executed by a basic unit, called verifiable lambda. The
concept of a verifiable lambda (short as lambda) is inspired
by serverless computing [34] (also known as Function-as-
a-Service) and SGX sandboxing systems [75, 101], but the
major difference is that DESEARCH’s lambda requires a TEE
enclave abstraction and yields a witness after every computa-
tion, allowing the intermediate data to be verified and reused.

A lambda is composed of three sandboxes (Figure 4): (1)
an ingress sandbox that validates the data upon loading; (2)
a computation sandbox which runs the main function and
has a self-contained execution environment that does not use
any external services, thus resists lago attacks [66] (attacks in
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FIGURE 5—Two example witness trees. A rectangle represents a
witness, edges represent data dependencies, and “H(...)” indicates
hashes. This figure contains two search queries (“q1” and “g2"): ¢1
happens first, and there is a merge update to the indexes (indexs
derives from index: and items), then g2 happens. As a result, g1
and g2 share a subtree indicated in gray color.

which a malicious OS causes the process to harm itself); (3)
an egress sandbox that generates a witness before delivering
the result to the next lambda. This design isolates the actual
function execution from witness processing, so that the in-
tegrity of witnesses is easy to reason about. As a technicality,
there are several options for intra-enclave sandboxes, for ex-
ample, hardware-based mechanism [105] and language-based
isolation [113]. DESEARCH chooses the former. The notion
of DESEARCH verifiable lambda can be extended to other
scenarios such as the recommender system (§ 9).
A lambda’s witness is a tuple:

<{H(inl)7 H(in2),-- -}7 H(func), H(out)> _

signe
that mirrors how an output is generated by performing a
Sunction over a list of inputs. The H(in) (and H (out)) is
the hash of the input (and output) blobs, and H (func) is the
hash of the program binary that runs in this lambda. More
generally, witnesses can be thought of as a proof-carrying
data for the decentralized system, which explains how an
output is being generated and with which piece of code. Note
that a witness is signed by the lambda, and users can verify
the signature using KMS (§3).

Witness-Based Verification. All witnesses from a search
process form a tree, which we call a witness tree (see an
example in Figure 5). Users can verify their search results by
traversing and checking the corresponding trees, the roots of
which are the witnesses users receive from queriers.

To check a single witness, a user first verifies whether the
witness is signed by a legitimate executor and then checks
if the hash of the executed function is as expected. This ap-
proach, combined with the integrity guarantees of the underly-
ing TEE, ensures that the lambda which produced the witness
faithfully executed the desired function.

Now consider the data transition between two adjacent
lambdas in a search pipeline. The former lambda commits
its output and a signed witness to Kanban; the latter lambda
fetches one (or multiple) pair of data and witnesses from
Kanban, checks their signatures, validates if the hash in the

witness matches the data, and feeds the data to the main
function. A user can verify that the inputs of a latter lambda
are indeed the outputs from a former lambda by checking
whether H (in) of the latter equals H (out) from the former.

Finally, users check if data sources are genuine by check-
ing whether H (in) in the beginning (the crawling phase) is
indeed a correct summary of the original data source. Users
need to download the contents from the data source and cal-
culate their hashes, an expensive procedure (we address this
performance challenge below). If all the above checks pass,
users confirm that their search results are faithfully produced
because all steps—crawling from the data source, the inter-
mediate data transferring between tasks, and each task in the
search pipeline—are verified to be authentic and faithfully
executed.

Providing Efficient Verification. The aforementioned veri-
fication process works in principle, but in practice, a perfor-
mance challenge arises. To verify a search, a user would have
to download all the witnesses, check all the signatures and
hashes, and examine the data source. To lighten the burden
of verification on the user side, DESEARCH uses delegated
verification: users offload parts of their verifications to some
executors dedicated for verification, which we call verifiers.

Beyond simplifying user-side verification, delegated verifi-
cation also saves work by batching and deduplicating verifica-
tions from different users. This is based on an observation that
serving different search requests uses a lot of shared indexes,
hence the witnesses from the shared portion can be reused
(as an example, see the gray subtree in Figure 5). Because of
delegated verification, verifiers have the opportunity to batch
many common witnesses, which they verify once for all. Fi-
nally, users only have to verify the final step—the querier
phase’s witness, significantly accelerating the verification
(see delegated verification’s speedup in §8.2).

Search Completeness. The above verification ensures that
functions are executed as expected, but there is no guarantee
that these functions see all data. In fact, there is no definition
of “all data” (or search completeness) from a user’s perspec-
tive because newly generated data takes time to be reflected in
the search results. It is therefore unspecified what data must
appear in any particular search result.

To define completeness for searches, DESEARCH divides
time into epochs, and executors write data to Kanban anno-
tated with the current epoch (we elaborate on epochs in §5).
We define a search as complete if each step (represented by
witnesses) in the search pipeline (represented by a witness
tree) uses all inputs in Kanban before the step’s epoch, and
each input is from the most recent epoch available. For exam-
ple, a querier’s task in epoch ¢ is complete if the querier loads
all indexes generated before epoch 4, and the loaded portions
of the indexes are from their latest version before epoch .

To check the completeness of a witness, verifiers first rec-
ognize the epoch when the witness was generated, then load
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DeSearch Pipeline

the snapshot of Kanban immediately before that epoch (§5),
and finally verify if the executor used all the update-to-date
inputs. In practice, verifiers do not have to load the data in the
snapshot. They simply load the metadata including data ids
and their hashes.

5 Kanban

As mentioned in Section 4, Kanban is a storage system that
provides high availability and data integrity. Kanban is hosted
in public clouds for availability, but as a decentralized sys-
tem, DESEARCH does not trust these cloud providers for cor-
rectness. Instead, DESEARCH creates snapshots of Kanban
periodically, namely epochs, and commits digests of epochs
to a public distributed ledger. This approach provides epoch-
based data integrity: DESEARCH guarantees the integrity of
all of the data included in a committed epoch.

The rest of this section will introduce Kanban’s usage and
guarantees, and then discuss how DESEARCH uses Kanban
as a storage and coordination service.

Kanban Overview. Kanban serves two main purposes: stor-
ing data (including items, indexes, and witnesses) for the
search pipeline, and allowing executors to communicate and
coordinate their tasks. Kanban has simple APIs for both ser-
vices.

As a data storage, Kanban exposes key-value-like APIs
with append(key, val) and get(key). Keys are con-
structed by the data types, chunk numbers, and epoch num-
bers. For example, “index-#1000-v3” represents the 1000th
chunk of the index for epoch 3.

For communication, Kanban provides a mailbox for every
executor with send (mailbox, msg) and recv(mailbox).
Invoking send () allows an executor to submit a message to
a specified mailbox, and recv () to download messages. All
messages are encrypted using the mailbox owner’s public key,
which can be obtained from the KMS (§3), so only owners
can read message contents. There is no need for executors to
know other executors’ IP addresses to send them a message.

Note that both storage and communication APIs are wrap-

pers of the canonical key-value APIs, and Kanban can easily
adapt to different underlying (cloud) storage systems. Our
Kanban implementation uses Redis, a popular key-value store,
as the underlying storage (see §7).

Epoch-based Data Integrity. Kanban requires executors to
sign their submitted data (using Ed25519) to prevent data
tampering or forgeries. Still, the underlying storage can show
different views of the data to different executors by omitting,
fabricating, rolling back, or forking the data. Detecting such
divergences often requires clients (executors in our context)
to synchronize out-of-band [82, 85], which is too expensive
in a decentralized environment.

DESEARCH uses a loose synchronization approach: mas-
ters periodically synchronize Kanban’s states with other ex-
ecutors. This loose synchronization works because of two
observations. First, search engines are not supposed to reflect
newly generated data in search results right away because
crawling and indexing takes time; as a (admittedly apples-
to-oranges) comparison, Google crawls a site every 3 days
or even longer [7]. Second, most of the tasks in the search
pipeline are idempotent, so it is acceptable if two executors
end up working on the same task. For example, it is safe for
two crawlers to crawl the same data source, or two index-
ers to generate indexes for the same items, as the results are
the same. Such duplicate work sacrifices efficiency but not
correctness.

To synchronize states with other executors, a master period-
ically creates an incremental snapshot (an epoch) of Kanban’s
data storage (without mailboxes), summarizes the snapshot
as a digest, and commits the digest to a public append-only
ledger (for example, Ethereum [116] or Steem [38]). After
the ledger accepts the digest, a new epoch is committed and
is (supposedly) visible to all executors.

DESEARCH guarantees epoch-based data integrity: for a
committed epoch, all data included in this epoch is immutable
and must be visible to all executors; otherwise, verification
will fail. To see how DESEARCH guarantees this, if Kanban
hides data from or returns stale data to an executor, the com-
pleteness checks (§4) of this executor’s witness will fail. This
is because verifiers know the epoch of the witness (say epoch
1) and the data this executor should have read (data in epoch
1 — 1). If the witness missed any data or read some stale
version, the verifier rejects.

Before using one epoch for checking completeness, veri-
fiers must ensure that the data (represented by their ids and
hashes) in one epoch is consistent with the digest on the
ledger. Our current verifier implementation fetches all data
ids and hashes in one epoch, calculates their digest, and com-
pares it with the digest on the public ledger. A better solution
is to organize each epoch as a hash tree [90], and verifiers
can check on-demand by only re-calculating hashes for the
sub-tree that they are examining.

Task Coordination by Epochs. DESEARCH’s pipeline is



coordinated through Kanban, which is based on epochs. An
epoch is 15 minutes by default. Executors learn the current
epoch number by querying the public ledger.

Figure 6 depicts how DESEARCH works with epochs.
Executors follow an offset-by-one strategy: they reads data
from the last committed epoch. This guarantees that the DE-
SEARCH pipeline only uses data that is already authenticated
by the epoch-based digests on the ledger.

Our current implementation uses masters to assign jobs for
crawlers and indexers. Masters also take charge of what data
is included in each epoch. They collect all data generated in
the current epoch and list them in an epoch. If an executor
in epoch ¢ fails to submit its outputs on time (before masters
commit epoch %), the data will be ignored and the work is
wasted. But this happens rarely as tasks are small.

Supporting Multiple Clouds. Though our current imple-
mentation only uses one cloud as Kanban’s underlying stor-
age, we plan to extend Kanban with multiple clouds for better
availability, and more importantly, to lower the risk of ven-
dor lockdown. With multiple clouds, executors write to all
clouds and read from any one of them. Master executors are
obligated to synchronize different clouds.

Data synchronization among clouds is challenging, which
often requires running an expensive consensus protocol (like
Paxos or Raft). By Kanban’s epoch design, DESEARCH syn-
chronizes clouds loosely, only when committing an epoch.
And if data diverges between clouds (note that data cannot
be forged, due to signatures), master executors are in charge
of merging the data. The key takeaway is that DESEARCH
(or rather a search service) can tolerate staleness and infre-
quent synchronizations, so masters have plenty of leeway to
orchestrate an epoch on which all cloud agree.

6 Oblivious Search

DESEARCH guarantees search integrity (§2.1) by leveraging
witnesses and SGX. One might hope that SGX would also
provide privacy for searches, as SGX supports confidential
computing [26] and we assume that SGX works as designed
(§2.4). However, DESEARCH’s design in Section 4 leaks
information: an adversary can learn users’ keywords without
breaking any guarantees of SGX. Below, we introduce privacy
violations, and then show how DESEARCH addresses these
violations with ORAM and equalizing message length.

Privacy violations. To start a search, a user initiates a
TLS/SSL session to a selected querier from the active list
of queriers published on Kanban from masters. Although
the messages are encrypted and authenticated and computa-
tions are confidential (offered by SGX), adversaries can still
conduct two types of attacks (see examples in Figure 7):
First, an executor adversary that runs queriers can observe
memory access patterns (both EPC and DRAM) to infer user
keywords. Specifically, the adversary issues search requests
with all possible keywords to the querier it hosts; by observing

Keyword Volume Keyword Location
apple 1018*20 apple 0xffff000a

Network Executor

Adversary zip 256*10 Adversary zip Oxfffffccc
8 Request Verifiable Lambda
Response .
Users Executor Machine

FIGURE 7—A search faces two privacy challenges: a network adver-
sary can learn keyword information by monitoring request/response
volumes, and an executor adversary can infer keywords by observing
MEemory accesses.

memory accesses, it can construct a dictionary that maps a
keyword to a memory location [118]. Consequently, when
a real user sends a query, the adversary can infer the user’s
keywords by observing which memory locations are accessed
by looking them up in the dictionary.

Second, a network adversary can eavesdrop on the com-
munication between users and queriers, and among queriers
(which occurs when collaboratively serving one request). By
monitoring the network packet sizes, the adversary can learn
information about keywords [64] because candidate lists for
different keywords have different lengths, and returned items
(for example, a post on Steemit) also vary in size. Similar to
an executor adversary, a network adversary can also construct
a dictionary that maps keywords to search response lengths.

DESEARCH + ORAM. To prevent attacks from executor
adversaries, DESEARCH uses Circuit-ORAM [114], a well-
studied Oblivious RAM (ORAM) protocol. To be clear, sim-
ilar approaches have been explored before [88, 99]. DE-
SEARCH’s contribution is adapting the ORAM protocol to
build an end-to-end decentralized search engine that achieves
(relatively speaking) good performance.

Circuit-ORAM applies to a key-value store. In our case,
the keys are search keywords and values are lists of item
ids. Circuit-ORAM guarantees that an executor adversary
cannot learn anything about the searched keywords by an-
alyzing its memory accesses. For a keyword that does not
match any item, DESEARCH performs dummy accesses. Note
that Circuit-ORAM does not support concurrent accesses, SO
DESEARCH leverages multiple ORAM replicas for higher
throughput. Specifically, DESEARCH encodes the underlying
data in multiple ORAM instances, and accesses different in-
stances to process queries. This is safe because we use ORAM
exclusively for read-only workloads, and each instance is in-
dependent and has its own position map. This requires more
storage space, but DESEARCH allows executors to make this
trade-off.

Equalizing Message Length. Beyond ORAM, DESEARCH
needs to avoid leaking information from the number of
matched result items (count) and the length of each item (vol-
ume). We observe that results from search engines are highly
regular: search results are displayed in multiple pages; each
page contains a fixed number of items; and each item contains
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FIGURE 8—Lines of code of each component in DESEARCH.

a link (e.g., URL) and a small content snippet highlighting
the keywords. Therefore, DESEARCH equalizes result lengths
by returning a fixed number of entries for each search request,
and each entry has a 256-byte summary of the original con-
tents. Our mini-survey shows that more than 80% of search
result entries from Google are within 256 bytes. DESEARCH
hides the counts and volume of keywords by padding search
queries to the same length and limiting the number of key-
words to 32 (the maximum supported by Google).

7 Implementation

System Components. We implement our own crawlers that
parse raw data from Steemit and OpenBazaar. The Steemit
crawlers continue to aggregate the data appended to the Steem
blockchain, and the OpenBazaar crawlers pretend to be Open-
Bazaar peers to obtain the online shopping items. We use
the tokenizer from the Sphinx v2.0 [36]. Since we need to
manage index and digest database oursevles, we build our
own index management and support oblivious index manage-
ment via ORAM and customized distributed searches. We
use Intel SGX SDK to implement the three-sandbox verifable
lambda abstraction. In particular, our current implementation
uses three enclaves, which enforces hardware-level isolation
between witness validation/generation and search function
execution. We implement Kanban based on Redis v3.2 and
deploy it on a public cloud. We use a standalone machine to
simulate the append-only ledger system by providing APIs
to read and write on-ledger data. The rest of DESEARCH’s
components are shown in Figure 8.

Parameter Tuning. We initialize the Circuit-ORAM setup
for indexes with 512-byte ORAM block size, and another
Circuit-ORAM instance for content summaries with 256-byte
ORAM block size. We overlap their operations to minimize
the latency. For the queriers, we add an inode layer as an
indirection to reference the real indexes. Using two blocks as
the inodes, it is enough to accommodate keywords with 64KB
mapping list (the maximum length of a Steemit mapping list
we found is 48KB, and that of OpenBazaar’s is less than
4KB). As 99th percentile of the crawled items are shorter

deserialization. ORAM setup time includes initializing two Circuit-
ORAM instances, namely, inverted indexes and content digests.

than 512 bytes, these raw data items are directly stored in the
index block to reduce the storage overhead.

We experiment with different data setups to help determine
what size of data shard is more suitable for a desktop-side
querier, as shown in Figure 9. We assign 1M data items to
each querier because it incurs mild memory overhead (without
exceeding SGX physical memory capacity) and its response
time is acceptable (within 1 second).

Finally, the Kanban epoch value is set to 15 minutes, be-
cause almost all existing distributed ledger/blockchain sys-
tems yield a new block within this period [22]. This is enough
for verifiers to summarize the data snapshot on Kanban within
an epoch. For shorter epochs, one could use an incremental
hash function [57] to create the digest incrementally through-
out the epoch instead of starting at the end of it.

Side-Channel Defenses. DESEARCH uses the formally ver-
ified cryptographic library HACL* v0.2.1 [123] which is
resistant to digital (cache and timing) side channels. Par-
ticularly, we borrow its Ed25519 implementation that con-
tains no secret-dependent memory access and branch condi-
tions against speculative attacks [67] and branch prediction
attacks [81]. We integrate ORAM into index management
using a ZeroTrace [99]. For ORAM block encryption, we
choose AES-NI-based AES-128-GCM. AES-NI is purport-
edly side-channel resistant according to Intel [76]. Finally,
we use the OpenSSL library [23] with the latest patch from
Intel (commit f74c8a4) to mitigate hardware vulnerabilities
(e.g., power-based fault injection [111]).

Limitations. DESEARCH’s current implementation only sup-
ports full-text search. The links of images, audio, or video,
encoded in the texts may be hosted in other unverified servers.
DESEARCH does not guarantee their integrity.

8 Evaluation

Our evaluation answers the following questions:

* What is the overall serving performance of DESEARCH
when dealing with the whole dataset, in terms of end-to-
end latency, throughputs, and scalability? (§ 8.1)

* How long does it take to verify a search results with respect
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FIGURE 10—Evaluating DESEARCH w.r.t scalability and failure tolerance in a decentralized environment. In (a), each replica consist of 82
distributed instances. The failure tolerance experiments (b and c) use a 4-replica setup and collect 2-hour throughput variation and failure rates.

to soundness and completeness? (§ 8.2)
* Does DESEARCH tolerate executors joining, leaving, or
failing frequently? (§ 8.3)

Experimental Setup. We deploy DESEARCH on 15 SGX-
enabled machines, with 8-core Intel i7-8700 CPU at 3.20GHz,
16GB DRAM, 128MB processor reserved memory (= 94MB
EPC), on Ubuntu 16.04 LTS, Linux kernel 4.13.0, and mi-
crocode version 0xd6. We run enough querier instances on
each machine without reaching the physical memory limit (no
swap space used), and each instance is seen as an executor.
To build a decentralized DESEARCH network, we also
use cloud-based virtual machines to add more executors. We
run DESEARCH using simulation mode and add the latency
obtained from the microbenchmark (see § 8.1, Overhead Anal-
ysis). To simulate a geo-distributed environment, we use the
global ping statistics [16] to emulate the latency amongst
executors. It takes around 237ms on average to establish a pri-
vate session using Kanban’s mailbox (using executor’s public
key). Our evaluation does not include this overhead, since a
user or an executor can reuse a session to avoid this costly
overhead coming from frequent session re-establishment.

8.1 Serving Performance

Search on Steemit Dataset. Steemit [39] is a decentral-
ized blogging and social media service built upon the Steem
blockchain [38], which rewards users with the cryptocurrency
Steem Dollars (SBD) for publishing and curating content. We
run 50 DESEARCH crawlers on SGX-enabled desktops to con-
stantly update Kanban with the latest posts from the Steem
blockchain. As the time of evaluation, we altogether fetched
81,681,388 posts, distributed across 952 epochs (nearly 10
days) leading to around a 234GB Steemit dataset. Simultane-
ously, we run 50 indexer instances to build indexes using the
data from Kanban. It takes 108s for an indexer to fetch 100K
items from Kanban, and 88s to generate the corresponding
indexes. The indexers further remove 659 stopwords based
on Google stopword list [41], and therefore yields a total of
294K keywords for an inverted index. All of this results in
witnesses totaling 21.31GB.
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To offer search for the complete Steemit dataset (234GB),
we run 82 instances of DESEARCH queriers, each managing
1 million data items (namely, Steemit posts) with witness
generation and ORAM enabled. We measure the end-to-end
latency by randomly choosing queriers to collect all results,
and sending 10,000 single-keyword search requests to saturate
the queriers. The average end-to-end latency is 205ms, and the
worst end-to-end latency is 706ms. This latency is reasonable
for a search engine. The throughput is 43 requests/sec (this
corresponds to 3.7M requests/day). Although the measured
throughput is relatively low, we expect that a decentralized
network can achieve higher throughput as more executors
join (see “Scalability” below).

Search on OpenBazaar Dataset. OpenBazaar (OB) [28] is
a decentralized e-commerce platform where individuals can
freely trade goods with no interference from a middleman.
The OB frontend provides an API [6] for a customized search
engine to update the shop contents by crawling IPFS [58],
an append-only storage for OB’s shopping lists. Because OB
allows sellers to remove listings that are no longer available
(e.g., sold out or discontinued), we do not crawl the stale
listings from IPFS. At the time of evaluation, it has an average
of 21K listings on sale per day, and hence we only use one of
DESEARCH’s executors to support the search. The latency for
searching OB’s dataset is 37ms, while the throughput is 53
requests/sec. Everyone who has an SGX machine can reuse
the indexes on Kanban, build the search for OB in about 3
minutes, and quickly support other peers in need.

Overhead Analysis. How does trusted hardware, the witness
mechanism, and oblivious protections affect the search per-
formance? To answer this question, we measure the overhead
breakdown of one querier instance managing 1M data items.
For each experiment, we run ab for Smin and search the most
popular keywords in the dataset, which can be considered as
the worst-case scenario for DESEARCH. Figure 11 shows the
average latency and average throughput for multi-keyword
searches. The latency is proportional to the number of search
keywords as it requires fetching more rounds of index blocks
from the Circuit-ORAM server and finding intersecting re-
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confinement; ORAM represents the Circuit-ORAM construction.

sults.

Putting a querier into SGX with DESEARCH’s lambda en-
forcement adds 107% overhead in latency and 102% overhead
in throughputs. This is because each network I/O requests
must issue an ocall (a context switch between SGX enclave
and user-space) in DESEARCH’s egress sandbox. In the fu-
ture, we can optimize DESEARCH with asynchronous ocalls
as studied in SCONE [55]. The witness generation consists of
hashing the lambda’s inputs and outputs with SHA-256, and
signing this witness with Ed25519. The witness generation
only imposes 1% overhead. Finally, we find that the domi-
nating factor is Circuit-ORAM, which incurs 148% ~ 446%
performance overhead. While this overhead is considerable, it
gives strong privacy guarantees against the executor adversary
that controls the lambda.

Historical statistics [19] show that 71.3% search queries
do not exceed four keywords. Four-keyword ORAM-based
searches in DESEARCH incur 811ms latency, which is accept-
able in a human interactive process.

Scalability. To evaluate if DESEARCH can scale horizon-
tally, we measure the overall throughput while increasing the
number of DESEARCH replicas, each of which consist of 82
Steemit queriers. As shown in Figure 10a, the throughput of
the deployed network increases linearly with the number of
replica servers. By supporting 380 requests/sec, DESEARCH
can handle at least 32 million requests per day.

According to Alexa traffic analysis [1], Steemit has 30K
daily users, and each of them has at least 2 visits per day.
Because of the fact that Steemit is one of the top 5 popular
decentralized services [37], this means that our current DE-
SEARCH implementation is able to support up to 540 different
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Native Verifier-based Speedup
Soundness
Witness Download 437s -
Signature Verification 273s -
Completeness
Witness Tree Verification 512s -
Final-Phase Verify
Verifier Interaction Os 1.0s
Signature Verification Os 0.3s
Total Time 1231s 1.3s 947x

FIGURE 12—User-side verification cost comparison between native
and verifier-based delegated verification.

decentralized services concurrently.

8.2 Verification Cost

A user verifies the final results holding:
* the root digests retrieved from the ledger,
* the public keys of all executors from DESEARCH masters,
* several witnesses from queriers and the rest of the related
witness from Kanban.

The first two can be prefetched and therefore can be deemed
an offline cost. Figure 12 shows the user-side costs of different
verification choices for a single-keyword search.

In the native verification, a user verifies the search results
on her own. To verify soundness, it takes 437s to download
witnesses from Kanban, and 273s to check the signatures
using Ed25519. For completeness, the user first ensures the
witnesses from Kanban are consistent with the digests from
the ledger, and then breadth-first traverses the connected wit-
ness tree from search results to indexes to items. It takes 521s
to finish this verification. The verifier code can be installed
locally to automate this process.

In the verifier-based verification, a user sends the received
witnesses to verifiers. The optimization opportunity is that
queriers share indexes in common within an epoch, and hence
the verification effort can be reused. The user only needs to
verify the witnesses in the private domain, which are the 82
witnesses from queriers. It only takes 1.0s to interact with a
verifier and 0.3s for hash and signature verifications.

8.3 Failure Tolerance

To simulate failure, we use an online/offline list to maintain
each executor’s status. Statistically speaking, we assign 80%
executors with online time more than one epoch (15 min) and
20% staying online for less than one epoch. If a querier does
not respond in time, the client issues a retry after a timeout
(3s). Dead executors are removed from the active list when the
epoch is updated, and they will come back alive and re-join
DESEARCH network again. If the remaining online executors
fail to comprise a complete dataset, the client will receive
a failure. This test use 4 replicas, where each instance still



handles one million data items.

We collect the variation of throughput and failure rates
under different situations using 2 hours of experiments. In
Figure 10b, we observe DESEARCH’s throughput varies be-
tween 130 requests/sec and 160 requests/sec, and the failure
rate is below 10 per second. Figure 10c shows another extreme
situation where 50% of executors fail within one epoch. We
observe the throughput still remains around 130 requests/sec
while the failure rates rise to 15 per second on average.

9 Discussion

Incentive Model. Like existing decentralized systems [94,
116], DESEARCH relies on volunteers to offer service avail-
ability. To encourage TEE owners to join in DESEARCH,
we hence discuss a possible incentive model, inspired by
Teechain [84] that harnesses TEE as a deposit bank, where
a cryptocurrency owner can securely transfer tokens from a
blockchain to an offline TEE enclave. Our observation is that
currently Steem Dollars (SBD) flow from readers to mostly
popular post authors. Our incentive model, instead, transfers
SDB from readers — queriers — indexers — crawlers —
authors, where anyone who uses data from others pays for the
data usage. Our witness is a natural evidence for this usage.
The more TEE computing power an executor contributes, the
more cryptocurrency it gains as rewards. Introduing such an
incentive model also helps mitigate the DoS attacks as the
attack has to pay the executor.

System Bootstrap. To bootstrap DESEARCH, any executor
with TEE can become a master, as long as it downloads the
code of master and runs the code within the TEE enclave. The
master’s initialization will generate a pair of public/private
keys. The former is recorded on the ledger for public avail-
ability, and the latter is kept within the enclave, being DE-
SEARCH’s root key. Any party can use TEE remote attestation
mechanism [77] to verify the genuineness of the root key. The
master then registers itself in the active list on Kanban. More
executors (say, 21) are required to join in and be assigned
masters to start the epoch. Executors that join later will be
finally assigned search lambdas to provide the search service.

Storage and Network Cost. DESEARCH assumes a pub-
lic Kanban that provides large storage and high bandwidth.
Using Amazon’s 32GB-RAM EC2 T2 instance price as of
November 2020, DESEARCH costs about $10 US dollars per
day. However, the cost can be amortized over 30K users per
day if we assume enough users are using DESEARCH (§ 8.1),
for a total of less than 0.033 cents per user each day.

Extending DESEARCH to Other Functionalities. The ar-
chitecture of DESEARCH is not limited to the search scenario.
The nature of the stateless design in DESEARCH lambda al-
lows it to be extended to more decentralized services. For
example, it is intuitive to extend our architecture for verifiable
recommendation for OpenBazaar, the online shopping case.
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A user can verify that the advertisements are chosen based on
his interest, without infiltrating any opaque intention. To pro-
tect user’s privacy, such a decentralized recommender system
would require more care such as differential privacy.

Resistance on the Supply-chain Attack. To resist re-
cent notorious supply chain attacks (e.g., SolarWinds At-
tack [35]), DESEARCH should provide ene-to-end verifiablity
from source code to lambda image. Thanks to Reproducible
Builds [31], the correctness of DESEARCH results can be
audited via the trail of updates of the lambda software. It
is possible to place a compiler (bootstrap trust via Diverse
Double-Compiling [115] against Trusting Trust attacks [108])
inside an verifiable lambda, and use the generated witness to
verify the code of the lambda.

Other Use Cases. DESEARCH, being an infrastructure, can
be used as “watchdog” for other search services. In the “covert
adversar” threat model, the adversary can act maliciously
provided that it is not being caught (otherwise would have
significant financial loss or legal implications). Users can con-
tinue to use an existing search engine, and cross-validate the
results with a system like DESEARCH in the background and
off the critical path, or potentially as a spot check rather than
on every search query. This presupposes that the centralized
search engine is willing to public algorithms for crawling,
indexing, ranking, etc.

Higher Throughputs. Achieving higher throughputs for de-
centralized systems is an exciting topic. The current through-
put of an DESEARCH executor is limited due to the use
of Circuit-ORAM, which inherently lacks concurrency sup-
port. We also tried array-based ORAM, such as Square-Root
ORAM (SQRT-ORAM) [109]. Our experience with SQRT-
ORAM does incur little slowdown to throughputs, but its
reshuffling phase introduces 11.8s downtime for every 2000
requests for a querier. To hide this downtime, PRO-ORAM
[109] suggests using multiple instances. However, this would
incur more than 12GB memory overhead. We think it is not
suitable for a client-side machine. Our lesson is that although
our implementation is limited by Circuit-ORAM, the decen-
tralized replicas actually contribute to acceptable throughputs
(see Figure 10a).

10 Related Work

Decentralized Search Engines. There have been efforts in
building decentralized search services. YaCy [47] is a peer-
to-peer distributed search project since 2004. It enables de-
centralized indexes generation and allows these indexes to
be shared between peers. It implicitly assumes honest peers,
which does not hold true in a realistic decentralized environ-
ment. Presearch [29] leverages a blockchain to provide decen-
tralized search. Its design choice inherits blockchains down-
sides (e.g., wasteful replicas, privacy breaches). The Graph
[20] is an indexing protocol to search over decentralized stor-



age (e.g., Ethereum and IPFS). Similar to DESEARCH, The
Graph utilized a volunteer network; however, it lacks privacy
for the search process, and relies on determinism for result
verification. By contrast, DESEARCH is the first decentralized
search engine that addresses the challenges of both verifiabil-
ity and privacy. Dory [69] is a decentralized oblivious search
system atop the file system. Dory on its own does not return
the files, nor rank results, both of which are crucial to the real
search. DESEARCH provides privacy for keyword-based data
retrieval, ranking and returning results to end users.

Verifiable Search Engines for Decentralized Services.
There is an increasing interest in providing verifiable search
for decentralized services, due to the diversified usages
of decentralized applications (see Figure 1). For verifiable
blockchain searches, vChain [117] adopts authenticated data
structures (ADS) while GEM2-Tree [120] explores on-chain
indexes. Compared with DESEARCH, vChain and GEM?-
Tree only support range-based searches, whereas DESEARCH
provides general-purpose full-text search and offers verifiabil-
ity via witness-based dataflow tracking. IPSE [24] provides
search over a public decentralized storage—IPFS [58] and al-
lows users to validate the correctness of the returns results via
hash-based content addressability. Freenet [14] is an anony-
mous file sharing network (similar to BitTorrent, providing
hash-based file verifiability) but is not search oriented. One
should know the file’s seed to retrieve the file, but not necessar-
ily search all files that contain a particular content. BITE [88]
offers trustworthy Bitcoin transaction searches by deploying
an enclave at a Bitcoin full node. Although IPSE, Freenet and
BITE can provide correct results for users (soundness in DE-
SEARCH), they lack completeness for the final results, which
is critical for search because missing results can make the
search service vulnerable to censorship [40]. In comparison,
DESEARCH witnesses also guarantee search completeness
with respect to the latest committed epoch.

Private Search Engines with TEE. TEE is a hot topic for
providing private search. To hide users’ search intention, X-
Search [92] utilizes a cloud-side TEE proxy while Cyclosa
[96] adopts browser-side TEE proxies. X-Search and Cyclosa
are metasearch engines (a proxy between users and a search
engine) which reveals query keywords and results to search
providers, whereas DESEARCH is a complete search engine
that provides privacy by combining TEE and ORAM. A long
line of prior works (Opaque [122], OCQ [70], ZeroTrace [99],
Oblix [91], Obliviate [50], POSUP [74], etc.) have explored
TEE and ORAM combination to protect search process pri-
vacy. Similar efforts have been made by combining symmetric
searchable encryption (SSE) and TEE (e.g., Rearguard [107]),
or private information retrieval (PIR) and TEE (e.g., SGX-
IR [104]). DESEARCH can benefit from these private search
techniques to better protect decentralized search services.

Secure Big-data Systems with TEE. Many systems have
leveraged TEE for big-data computation [59, 75, 101] and
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big-data analytics [70, 98, 122]. VC3 [101] secures a map-
reduce framework with TEE, and Opaque [122] protects SQL
queries for Spark SQL. Different from VC3 and Opaque,
DESEARCH is facing a dynamic computation graph. As the
number of alive executors change over time, DESEARCH ap-
plies witnesses to verify the correctness of the ad-hoc tasks.
Ryoan [75] provides distributed sandboxes for private data
computation. Compared with Ryoan, DESEARCH offers pub-
licly verifiable witnesses for reusable intermediate data and
effectively reduces the verification cost (see § 8.2).

Other TEE-based Systems for Decentralized Services.
TEE have been used to build a data feed service for blockchain
(or oracle) [121], off-chain smart contracts [68], Bitcoin fast
payment channel [84], and online-service sharing [87]. They
differ from DESEARCH in their purpose and functionality.

TEE and Serverless Computing. DESEARCH’s verifiable
lambda notion is inspired by today’s serverless computing.
DESEARCH extends this notion from centralized cloud-based
computing to decentralized computing. S-FaaS [51], T-FaaS
[61], Clemmys [110] are TEE-based serverless systems that
protect serverless workloads with TEE. Instead, DESEARCH
utilizes epoch-based Kanban and TEE-generated witnesses to
maintain and verify the state of the (stateless) TEE lambdas.

New Decentralized Systems. Recently, some new architec-
tures of decentralized systems have been proposed to address
the limitations (low-throughput, resource waste, lack of pri-
vacy) of conventional decentralized ledgers or blockchain.
Algorand [73] and Blockene [100] propose new consensus
protocols to achieve a high-throughput. Omniledger [79] and
Protean [52] introduce sharding to scale out the blockchain.
Similarly, DESEARCH shards executors to different roles, and
offloads states to Kanban to achieve high scalability.

11 Conclusion

DESEARCH is the first decentralized search engine to support
existing decentralized web applications, while guaranteeing
verifiability owing to its verifiable witness mechanism and
offering end-to-end privacy for query keywords and search
results. DESEARCH achieves good scalability and minimizes
fault disruptions through a novel architecture that decouples
the decentralized search process into a pipeline of verifiable
lambdas and leverages a global and highly available Kanban
storage service to exchange messages between lambdas. We
implement DESEARCH on top of Intel SGX machines and
evaluate it on two decentralize systems: Steemit and Open-
Bazaar. Our evaluation shows that DESEARCH can scale lin-
early with the number of workers (executors) and can achieve
the stringent subsecond latency required for a search engine
to be widely usable.
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