
Ad Hoc Transactions:
What They Are and Why We Should Care

Chuzhe Tang1,2, Zhaoguo Wang1,2, Xiaodong Zhang1,2, Qianmian Yu1,2

Binyu Zang1,2, Haibing Guan3, Haibo Chen1,2

1Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University
2Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China

3Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai Jiao Tong University
zhaoguowang@sjtu.edu.cn

ABSTRACT
Many transactions in web applications are constructed ad
hoc in the application code. For example, developers might
explicitly use locking primitives or validation procedures to
coordinate critical code fragments. We refer to database
operations coordinated by application code as ad hoc trans-
actions. Until now, little is known about them. This paper
presents the first comprehensive study on ad hoc transac-
tions. By studying 91 ad hoc transactions among 8 popular
open-source web applications, we find that (i) every studied
application uses ad hoc transactions (up to 16 per appli-
cation), 71 of which play critical roles; (ii) compared with
database transactions, concurrency control of ad hoc trans-
actions is much more flexible; (iii) ad hoc transactions are
error-prone—53 of them have correctness issues, and 33 of
them are confirmed by developers; and (iv) ad hoc trans-
actions have the potential to improve performance in con-
tentious workloads by utilizing application semantics such as
access patterns. Finally, implications of ad hoc transactions
to the database research community are discussed.

1. INTRODUCTION
Today, web applications often use database systems to

store and serve large amounts of data, making coordinat-
ing concurrent database operations necessary for applica-
tion correctness. One common approach is using database
transactions. Database transactions isolate concurrent oper-
ations by encapsulating them into individual units of work.
Another widely adopted approach is using object-relational
mapping (ORM) invariant validation APIs. These APIs al-
low developers to explicitly specify invariants, such as the
uniqueness of column values, in the application code; at run-
time, ORM frameworks report errors on invariant violations.
So far, much work has been done to investigate and improve

© 2022 Copyright held by the owner/author(s). Publication rights
licensed to ACM. This is a minor revision of the paper entitled Ad
Hoc Transactions in Web Applications: The Good, the
Bad, and the Ugly, published in SIGMOD ’22, ISBN 978-1-
4503-9249-5/22/06, June 12–17, 2022, Philadelphia, PA, USA. DOI:
https://doi.org/10.1145/3514221.3526120

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

these two approaches [2, 16, 3, 10, 9, 6, 12, 11, 14, 1, 4].
However, besides these approaches, application developers

are also accustomed to coordinating critical database oper-
ations ad hoc. Specifically, developers might explicitly use
locking primitives and validation procedures to implement
concurrency control (CC), e.g., optimistic concurrency con-
trol (OCC), amid the application code to coordinate critical
database operations. We refer to such ad hoc coordination
of database operations as ad hoc transactions. Developers’
comments suggest that they implement ad hoc transactions
for flexibility or efficiency.

Figure 1 shows three real-world examples of ad hoc trans-
actions from open-source web applications. In each example,
the application code issues database operations via ORM
frameworks and uses ad hoc constructs to coordinate them.
The first two directly use locks for coordination, while the
third one implements a validation-based protocol similar
to OCC. We briefly elaborate Figure 1a, which shows how
an e-commerce application processes an add-to-cart request.
First, a lock identified by the target cart ID is acquired and
held unreleased until the whole business logic finishes. Then,
the target cart and items in it are transparently loaded from
the database system and converted into runtime objects cart
and items by the ORM. Next, the new item is added to the
items collection, and the total price is recalculated. Finally,
the ORM persists cart and items updates to the database
system. As shown in the examples, ad hoc transactions are
usually coupled with business logic, thus bringing difficulties
to a thorough investigation. As a result, there have been few
studies on ad hoc transactions, and neither their roles in web
applications nor their characteristics are clearly understood.

We spent five person-years conducting a comprehensive
study over 91 ad hoc transactions in 8 web applications be-
longing to six different categories. These applications are
considered the most popular in their respective categories,
as measured by GitHub stars. They are developed in differ-
ent languages (Java, Ruby, or Python) and different ORM
frameworks (Hibernate, Active Record, and Django). Our
study aims to understand the characteristics of ad hoc trans-
actions in existing web applications and their implications.
This paper presents a short summary of our findings and in-
sights, condensed from the conference version [13]. Briefly,
we discovered the following interesting, alarming, and per-
ceptive findings.

(i) Ad hoc transactions appear at critical APIs in every
studied application. Specifically, 71/91 ad hoc transactions
are on critical APIs in the studied web applications. For ex-

SIGMOD Record, March 2023 (Vol. 52, No. 1) 7

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3604437.3604440&domain=pdf&date_stamp=2023-06-08

lock_map.acquire(cart_id)

App-side map
cart locked
1 true
… …

id total
1 $38
… …

qty
2
3

cart
1
1
… …

$
7
8
…

DB table: Carts & Items

cart := ORM.getCart(cart_id)
items := cart.getItems()
items.append(new_item)
cart.total := cal(items)
ORM.save(items)
ORM.save(cart)
lock_map.release(cart_id)

(a) Ensuring consistent cart totals.

id redeems
1 10
… …

DB table: Invites
max
12
…

key value
"redeem1" true

… …

Redis KV

lock_key := "redeem"+invite_id
REDIS.set_if_not_exist(lock_key)
invite := ORM.getInvite(invite_id)
if invite.redeems<invite.max:
 invite.redeems += 1
 ORM.save(invite)
REDIS.delete(lock_key)

(b) Avoiding excessive redemption.

while true:
 poll := ORM.getPoll(poll_id)

ORM.exec(succes :=
 Update Poll
 Set tallies=poll.tallies, ver=ver+1
 Where id=poll_id And ver=poll.ver)

 poll.tallies[choice] += 1

id tallies
1 {1:10,2:12}
… …

DB table: Polls
ver
110
…

 And ver=poll.ver)
, ver=ver+1

 if succes: break

(c) Ensuring accurate poll statistics.

Figure 1: Ad hoc transaction examples. Coordinated DB operations are shaded yellow; ad hoc constructs are shaded green.

ample, there are 37 ad hoc transactions across 3 e-commerce
applications. 31 ad hoc transactions are in critical APIs such
as check-out, payment, and add-cart to coordinate operations
on critical data (e.g., user credits).

(ii) Ad hoc transactions’ usages and implementations are
much more flexible than database transactions. For example,
58 cases use a single, fine-grained lock to coordinate multi-
ple database operations. At first glance, we suspected that
these cases have missed necessary coordination and are thus
incorrect. However, upon closer inspection, we found that
not all operations require coordination. One reason is that
some objects are always associatively accessed, so a single
lock is sufficient for ensuring correctness.

(iii) Ad hoc transactions are prone to errors. Ad hoc
transactions’ flexibility comes at a cost—53 cases of ad hoc
transactions manifest concurrency bugs, 28 of which even
lead to severe real-world consequences, such as overcharging
customers. Among all issues, incorrect primitive implemen-
tations, such as locks, are the most common cause (47 cases).
We have submitted 20 issue reports (covering 46 cases) to
developer communities; 7 of them (covering 33 cases) have
been acknowledged.

(iv) Ad hoc transactions can have performance benefits un-
der high-contention workloads. Using application semantics,
such as access patterns, ad hoc transactions’ CC could be
implemented in a simple yet precise way. This allows them
to avoid false conflicts under high contention workloads. For
example, an ad hoc transaction may leverage the knowledge
of accessed columns to use column-level locks for coordina-
tion, achieving up to 1.3× API performance improvement
when compared to row-level locking by avoiding false con-
flicts on the contended rows.

The prevalence of ad hoc transactions and their unique
characteristics suggest the potential for improving existing
database systems that support these applications. Finally,
we discuss the implications of our findings on future database
and storage systems research.

2. BACKGROUND AND MOTIVATION
Concurrency Control in Web Applications. Today, web ap-
plications often use standalone relational database manage-
ment system (RDBMS) to manage and persist data so that
developers can focus on writing business logic. Most appli-
cations manipulate relational data with the help of ORM
frameworks such as Hibernate and Active Record. These
frameworks can transparently generate SQL statements that
fetch and persist data according to the application code.
ORMs also provide interfaces to assist developers in coor-
dinating concurrent database accesses: database transaction
APIs and invariant validation APIs.

ORM frameworks usually allow developers to use database

transactions explicitly, with interfaces that directly translate
to Transaction Start, Commit, and Abort statements. Devel-
opers use them to encapsulate multiple database operations
into units of work, and the database system takes the re-
sponsibility of coordination. A classic application is the co-
ordination of concurrent balance transfer in banking appli-
cations. ORM frameworks allow developers to configure the
isolation level for specific transactions.

Besides database transactions, ORMs also provide built-in
invariant validation APIs. For example, Active Record pro-
vides validation and association keywords, such as validates
and belongs to. Developers use them to explicitly specify
invariants, such as the uniqueness of column values and the
presence of associated rows, in the application code. For ex-
ample, writing“validates :email, uniqueness: true”tells Active
Record to ensure that the email column values are unique.
Active Record checks invariants upon database writes and
report errors on violations. Checks are typically done by ex-
amining the to-be-persisted ORM-mapped objects and re-
lated rows fetched from the database systems.

Ad Hoc Transactions in the Wild. Besides database transac-
tions and ORM-provided invariant validation, we have ob-
served a third CC approach in web applications—ad hoc
transactions. Like database transactions, ad hoc transac-
tions provide isolation semantics such as serializability to
database operations. The difference is that ad hoc transac-
tions coordinate operations with application code—it is the
application developers, instead of the database developers,
who design and implement the CC. Both ORM’s invariant
validation APIs and ad hoc transactions operate at the ap-
plication level. However, the difference lies in how they en-
sure correctness. The former looks at database states for
invariant violation; the latter directly isolates concurrent
database operations. For example, Figures 1a and 1b use
locks to isolate conflicting operations, e.g., the concurrent
reading and writing of the same cart. Similarly, Figure 1c
uses version checks to detect conflicting changes and ensure
read–modify–writes (RMWs) are atomic. In contrast, with
ORM’s invariant validation, these conflicting accesses can
freely interleave; application invariants, such as the non-
negativity of total fields, are checked only when data is writ-
ten back to the RDBMS.

To understand ad hoc transactions’ roles and criticality in
web applications, we investigated 8 representative applica-
tions of six categories (Table 1). They are the most popular
web applications in each category1 and written with different
languages and different ORMs. For example, Broadleaf is
the highest star-ed Java e-commerce application on GitHub

1Redmine is the second popular project management appli-
cation now. Its popularity has waned since we picked it as
the investigation target.

8 SIGMOD Record, March 2023 (Vol. 52, No. 1)

Application Category Language/ORM RDBMS Stars
Discourse Forum Ruby/Active Record PG 33.8k
Mastodon Social network Ruby/Active Record PG 24.6k
Spree E-commerce Ruby/Active Record PG, MY 11.4k
Redmine Project mgmt. Ruby/Active Record PG, MY, + 4.2k
Broadleaf E-commerce Java/Hibernate PG, MY, + 1.5k
SCM Suite Supply chain Java/Hibernate PG, MY 1.5k
JumpServer Access control Python/Django PG, MY, + 16.8k
Saleor E-commerce Python/Django PG, MY, + 13.9k

Table 1: The applications corpus. The “RDBMS” column
lists supported RDBMSs. “PG/MY/+” refers to Post-
greSQL/MySQL/others.

and Spree is the most popular e-commerce application in
Ruby. To locate ad hoc transactions, we first search the
keywords such as “lock,”“concurrency,” and “consistency” in
source code, commit histories, and issue trackers. Then, we
manually identify coordination code that isolates database
operations and the purpose of those operations.

Finding 1. Every studied application uses ad hoc transac-
tions. Among the 91 ad hoc transactions in total, 71 cases are
considered critical to the web applications.

For e-commerce applications, we consider an ad hoc trans-
action critical if it resides in their core APIs such as check-
out and add-cart to ensure safe shopping. For example, an
ad hoc transaction may coordinate the reading and writing
coupon data to avoid coupon overuse. Among the three pop-
ular e-commerce applications, Broadleaf, Spree, and Saleor,
there are 37 ad hoc transactions in total, and 31 of them
are critical. Specifically, 13 cases ensure that orders are ac-
cepted only when the stock quantity is sufficient, and 5 avoid
inconsistent capture of payment. Interestingly, all these ap-
plications have ad hoc transactions to ensure sufficient stock
quantity and coupon validity. See [13] for descriptions for
other applications’ core APIs.

3. CHARACTERISTICS OF AD HOC
TRANSACTIONS

We have carefully studied the 91 identified ad hoc trans-
action cases. An interesting but not surprising finding is
that, even though developers implement ad hoc transactions
in various ways, these cases can still be classified into pes-
simistic ad hoc transactions (65/91) and optimistic ad hoc
transactions (26/91). In pessimistic cases, developers ex-
plicitly use locks to block conflicting database operations in
ad hoc transactions. This method is similar to two-phase
locking (2PL) and its variants commonly used by existing
database systems [5]. Unlike database transactions, pes-
simistic ad hoc transactions’ locking primitives are usually
implemented from scratch by application developers (e.g.,
Figures 1a and 1b) or provided by other systems (see §3.2).
Meanwhile, optimistic ad hoc transactions execute opera-
tions aggressively and validate the execution result before
writing updates back to the database system (Figure 1c).
This approach is similar to OCC and its variants used in
existing database systems [8].

3.1 What Do Ad Hoc Transactions Coordinate?
In writing ad hoc transactions, developers explicitly place

ad hoc coordination constructs among the business logic.
This approach gives them the flexibility of choosing which

and how operations are coordinated, enabling partial coordi-
nation, cross–HTTP request coordination, and coordination
with non-database operations.

Finding 2. Among the 91 ad hoc transactions studied, 22
only coordinate a portion of database operations in their scopes,
and 10 coordinate operations across multiple requests. Besides,
8 cases coordinate database operations along with non-database
operations.

All DB Operations vs. Specific DB Operations. As ad hoc
transactions’ coordination is explicitly written by applica-
tion developers, developers can coordinate only specific data-
base operations instead of all operations in the transaction
scope. Consider the following example from the Spree e-
commerce application.

1 in: sku id, requested

2 lock(sku id)
3 sku := Select * From SKUs Where id=sku id
4 if sku.quantity >= requested:
5 sku.quantity -= requested
6 // the followig statements are auto-generated by ORM.save(sku)
7 Transaction Start
8 Update SKUs Set quantity=sku.quantity Where id=sku.id
9 Update Products Set updated at=now() Where id=sku.product id

10 category ids := Select category id
11 From Categories Join ProductCategories Using category id
12 Where product id=sku.product id
13 Update Categories Set updated at=now() Where id In category ids
14 Transaction Commit
15 unlock(sku id)

This transaction processes customer orders. It first fetches
the stock-keeping unit (SKU) data from the SKUs table,
checks and updates the SKU’s stock quantity, then persists
changes to the database system by invoking the ORM.save()
method. ORM.save() automatically starts a database trans-
action, within which it issues three updates and one query
(line 8–13). This transaction is running in the RDBMS’
default isolation level The first update changes the quan-
tity in the SKUs table, and other updates refresh the up-
date at timestamps of corresponding Products and Categories
rows. Categories rows are identified by querying the Product-
Categories table, which encodes the many-to-many relation-
ship between products and categories. In this example, the
only critical operations are those over SKUs (lines 3 and 8).
Therefore, developers explicitly lock over sku id in their ad
hoc transaction implementation. Other operations such as
product and category updates (lines 9 and 13) require no co-
ordination but are still in the lock scope, as the application-
level ORM.save() call automatically generates them.

In this example, replacing the lock()/unlock() primitives
with Transaction Start/Commitmay worsen performance [13].
Meanwhile, developers cannot exclude these timestamp up-
dates from the scope of database transactions as the ORM
hides the generation of such database operations. Over-
all, 22 ad hoc transactions coordinate only a portion of the
database operations in the transaction scope. Other opera-
tions require no coordination but are located in the trans-
action scope as they are either automatically generated by
the ORM or needed by critical operations.

Individual Requests vs. Multiple Requests. It is a perfor-
mance anti-pattern for database transactions to span mul-
tiple HTTP requests, which introduces long-lived transac-
tions (LLTs). However, 10 ad hoc transactions coordinate
database operations across multiple requests. Below is an

SIGMOD Record, March 2023 (Vol. 52, No. 1) 9

example derived from the Discourse forum application of
editing a post that spans two user requests. The user fetches
the post content for local editing in the first request. Then,
the user’s edits are applied in the second request. This ad
hoc transaction ensures that other concurrent edits do not
overwrite the content read by the first request when editing
the post.

1 Request 1 // fetch a post & increment view count
2 in: post id
3 Update Post Set view cnt=view cnt+1 , ver=ver+1 Where id=post id
4 post := Select * From Posts Where id=post id
5 response render(post) // this response includes the version
6 Request 2: // detect interruptions & apply user updates
7 in: post id, new content , prev ver

8 lock(post id)

9 current := Select * From Posts Where id=post id

10 if current.ver!=prev ver: unlock(post id); response FAILURE

11 Update Posts Set content=new content , ver=ver+1 Where id=post id

12 unlock(post id); response SUCCESS

Specifically, developers use an optimistic ad hoc transac-
tion to ensure the consistency of the post content. They
associate a version with each post to track updates. Be-
fore updating a post, the ad hoc transaction checks the
consistency (i.e., not overwritten) by validating the version.
Furthermore, it needs to use a lock to ensure the validate-
and-commit atomicity. If the validation fails, the current
request handler will not update the content, thus avoiding
overwriting others’ changes. However, the view count in-
crement in the previous request handler cannot be rolled
back. Normally, web applications choose optimistic coordi-
nation instead of pessimistic coordination to coordinate mul-
tiple requests to avoid long blocking. Extensions to database
transactions were proposed for LLTs, such as Sagas [6] and
savepoints. Unfortunately, they usually provide (potentially
unnecessarily) stronger semantics than what ad hoc trans-
actions provide here [13].

DB Operations vs. Non-DB Operations. The flexibility of
ad hoc transactions is also reflected in coordinating non-
database operations. A web application may use several
storage systems to persist its data. Thus, it needs to ensure
data consistency across different systems. There are 8 cases
of ad hoc transactions that coordinate both database opera-
tions and non-database operations, such as operations over
in-memory shared variables, local file systems, and remote
object/key–value (KV) stores. Consider the following ex-
ample simplified from the timeline feature of the Mastodon
social network application.

1 Create Post
2 in: follower id, post id, content

3 lock(post id)
4 Insert Into Posts Value (post id, content)
5 REDIS.add to set(”timeline”+follower id, post id)
6 unlock(post id)
7 Delete Post
8 in: follower id, post id

9 lock(post id)
10 REDIS.delete from set(”timeline”+follower id, post id)
11 Delete From Posts Where id=post id
12 unlock(post id)

It uses a Redis KV store and an RDBMS as its backend
storage. Redis holds the IDs of posts shown on each user’s
timeline, while the concrete post contents are resident in the
RDBMS. To ensure correctness, Mastodon must guarantee
the consistency between the post contents in the RDBMS
and the post IDs in Redis. Specifically, the post IDs in Redis

should always refer to some posts in the RDBMS, which can
not be achieved solely with database transactions. Thus, de-
velopers implement ad hoc transactions to coordinate these
operations. In general, when the business logic requires data
from multiple storage systems (including multiple RDBMSs)
to stay consistent, the alternative option is to use distributed
transactions, such as WS-TX or XA transactions. However,
storage systems rarely support such distributed transaction
protocols, which necessitate ad hoc transactions.

3.2 How Is the Coordination Implemented?
Developers need to manually construct ad hoc transac-

tions, which includes manual locking and validation. As a
result, the locking primitives and validation procedures usu-
ally have different implementations.

Finding 3. There are 7 different lock implementations and
2 validation implementations among the 8 applications we stud-
ied. Except for Broadleaf, developers consistently use the same
lock/validation implementation in individual applications.

Existing Systems’ Locks vs. Hand-Crafted Locks. All 8 stud-
ied applications have lock-based pessimistic ad hoc transac-
tions. They usually use a single locking primitive implemen-
tation, from either existing systems or scratch.

Four applications directly use the locking primitives pro-
vided by the database systems or languages runtimes. Specif-
ically, Spree, Saleor, and Redmine use the database Select
For Update statements, while SCM Suite implements ad hoc
transactions based on the Java synchronized keyword. Most
commercial databases accept Select For Update statements,
which atomically fetch target rows and acquire correspond-
ing writer locks. The lock will be released when the currently
active transaction ends.

Three other applications, Discourse, Mastodon, and Jump-
Server, have locks implemented from scratch. Interestingly,
they all store lock information, including lock keys and sta-
tus (locked/unlocked), in the Redis KV store. However,
their implementation details are different. As shown in Fig-
ure 1b, Mastodon developers use the Redis SETNX (short
for SET if Not eXists) command to insert an entry for the
requested lock. Similar to the compare-and-swap instruction,
this command succeeds only if no entry with the same key
exists. In contrast, Discourse developers use a combination
of WATCH, GET, MULTI, and SET commands to optimisti-
cally ensure the atomicity of checking existing locks and set-
ting new locks. As a result, Discourse’s Redis lock requires
six additional round trips compared to Mastodon’s, which
only needs one. Saleor uses SETNX to implement locks as
Mastodon; it also adds a re-entrant feature, allowing locks
to be repeatedly acquired by the same thread.

Broadleaf is the only application using both home-grown
lock implementations and existing systems’ primitives—the
Java synchronized keyword. More interestingly, it has three
home-grown implementations: one uses a separate database
table to store lock information similar to those Redis-based
locks; the other two use in-memory maps for lock informa-
tion. The latter two implementations differ in the specific
maps used: one directly uses a concurrent map from the
standard library, ConcurrentHashMap; the other uses a cus-
tomized ConcurrentHashMap where developers added a least
recently used (LRU) eviction policy to remove excessive lock
entries. We find no clear evidence that these different im-

10 SIGMOD Record, March 2023 (Vol. 52, No. 1)

plementations serve different purposes. However, we do find
that they are introduced by different developers.

ORM-Assisted Validation vs. Hand-Crafted Validation. 6 out
of 8 studied applications have validation-based optimistic
ad hoc transactions. Their validation procedures are either
provided by the ORM or developers themselves.

There are 4 applications that use ORM-provided valida-
tion procedures via framework-specific interfaces. For exam-
ple, Active Record recognizes columns named lock version
and uses them to store versions for individual rows. Upon
each update, as shown in Figure 1c, Active Record automat-
ically adds version checking to the Where clause and incre-
ment version along with user-initiated updates, ensuring the
atomicity between validation and commit.

When using hand-crafted validation procedures, develop-
ers must ensure the atomicity between validation and com-
mit. As shown in the listing from §3.1, additional locks are
employed for this purpose. All validation procedures in Dis-
course’s and SCM Suite’s optimistic ad hoc transactions are
manually implemented. Broadleaf uses both implementa-
tions, introduced by different developers.

3.3 What Are the Coordination Granularities?
Developers often have a deep understanding of applica-

tions that enables them to customize the coordination gran-
ularity. Intuitively, one might think of finer-grained co-
ordination than database transactions. However, ad hoc
transactions also employ coarser-grained coordination than
database transactions. Specifically, ad hoc transactions of-
ten group multiple accesses together and coordinate them
with a single lock. This can largely reduce ad hoc transac-
tions’ CC complexity and avoid deadlocks.

Finding 4. Among the 91 studied ad hoc transactions, 14
cases perform fine-grained coordination such as column-based
coordination, while 58 cases perform coarse-grained opera-
tions, i.e., using a single lock to coordinate multiple operations.
9 cases implement both types of coordination for different ac-
cesses.

Single Access vs. Multiple Accesses. Locks in ad hoc trans-
actions could coordinate arbitrary database accesses. Ac-
cording to our study, 58 ad hoc transactions use one lock to
coordinate multiple database accesses, as developers could
manually identify the following two access patterns.

The first pattern is the associated access pattern. Given
two database rows, r1 and r2, if accesses to r2 always happen
in a transaction that also accesses r1, we say r2 is associa-
tively accessed with r1 and refer to this access pattern as
the associated access pattern. Access to rows associated
with a one-to-many relationship, such as an is-part-of rela-
tionship, often follows this pattern. Consider the example
in Broadleaf, shown in Figure 1a. A cart is represented as
one Carts row and several Items rows. When a user modi-
fies the cart, the transaction will associatively access these
rows. The associated access pattern provides an opportu-
nity of replacing multiple locks (e.g., row locks) with one
lock that coordinates these accesses. In the above exam-
ple, developers use a single cart lock to coordinate accesses
to both tables, Carts and Items. This lock explicitly serial-
izes conflicting transactions up front, thus avoiding potential
aborts when using database transactions.

There are about 37 ad hoc transactions that leverage the

associated access pattern. For all the cases we studied, the
associated rows are connected by either one-to-many or one-
to-one relationships. We find that these one-to-many rela-
tionships stem from the application-specific data modeling
that reflects the business semantics, such as the relationship
between carts and items in the above example. Meanwhile,
these one-to-one relationships come from inheritance.

The second pattern is the read–modify–write (RMW) pat-
tern. RMW means that a transaction first queries the data
from the database system, then makes modifications accord-
ingly, and finally persists modifications back to the database
system. In a 2PL system without sufficient deadlock preven-
tion mechanisms, such as MySQL, there can be a deadlock if
two concurrent transactions perform the RMW on the same
row. Consider the example shown in Figure 1b, in the forum
application Discourse, RMW operations are issued when cre-
ating a new account via invitations. The invitation is first
read from the RDBMS. After checking its validity, it gets
updated and written back to the RDBMS. If two users con-
currently use one invitation to join the forum, a deadlock
can easily appear, making both users unable to succeed. To
mitigate this, developers craft ad hoc transactions to acquire
exclusive locks before the first reads, avoiding possible dead-
locks. 56 out of 91 cases leverage this access pattern. Among
them, 35 cases also utilize the associated access pattern.

Fine-Grained vs. Coarse-Grained. Coordinating at a finer
granularity than existing database systems has an advantage
in avoiding false conflicts. Ad hoc transactions’ fine-grained
coordination is either based on columns or predicates.

There are 5 ad hoc transactions that use column-level co-
ordination. Since fields of ORM-mapped objects correspond
to database columns, developers could coordinate database
accesses at the column granularity if they know which fields
are used. For example, in the forum application Discourse,
two transactions, create-post and toggle-answer, will issue the
following database operations accessing the Topics table.

1 Create Post
2 in: topic id, content

3 lock(”create post”+topic id)
4 next post id := Select max post From Topics Where id=topic id
5 Insert Into Posts Value (next post id, content, topic id)
6 Update Topics Set max post=max post+1 Where id=topic id
7 unlock(”create post”+topic id)
8 Toggle Answer
9 in: topic id, post id

10 lock(”toggle answer”+topic id)
11 Update Posts Set is answer=true Where id=post id
12 Update Topics Set answer=post id Where id=topic id
13 unlock(”toggle answer”+topic id)

Line 6 increments the max post field; line 12 sets the an-
swer field. Though these operations have no column-level
conflicts, if they access the same row, an RDBMS using row
locks cannot execute them in parallel. Therefore, instead
of using database transactions, Discourse developers imple-
ment two lock namespaces for these two transactions so that
their locks do not interfere with each other.

Meanwhile, there are 10 cases that coordinate using pred-
icate information. Knowing the search conditions, develop-
ers can use the precise predicate for coordination. This can
avoid false conflicts caused by the gap lock used in the major
RDBMSs, including MySQL and PostgreSQL. For example,
in the Spree e-commerce application, RDBMSs might con-
currently execute the following code with order id of 10 and
11 corresponding to two orders created by transaction Txn
1 and Txn 2, respectively.

SIGMOD Record, March 2023 (Vol. 52, No. 1) 11

1 in: o id, ..

2 lock(order id=o id)
3 pays := Select * From Payments Where order id=o id
4 if pays is empty:
5 Insert Into Payments Value (o id, ..)
6 unlock(order id=o id)

In Txn 1, line 3 checks if any payment row exists for the
order identified by order id=10. Since an order can have
many payments (to allow mixed payment methods), the or-
der id index of the Payments table is non-unique. Suppose
that it currently indexes values 9 and 12. Executing line 3
of Txn 1 causes the RDBMS to acquire a gap lock on the in-
dex interval (9, 12), blocking concurrent inserts to this range
so that re-executing line 3 can obtain repeatable results.
Meanwhile, line 5 in Txn 2 inserts a new payment row for
another order whose order id equals 11. Though this insert
does not interfere with Txn 1’s line 3, it would nevertheless
be blocked by the gap lock. We consider these locks a variant
of predicate locks [5, 7], as they use predicate information of
accesses (i.e., the order id values) to achieve precise mutual
exclusion without false conflicts. Among the 91 cases we
studied, 10 cases implement predicate locking for accurate
coordination, all based on equality predicates; 1 case imple-
ments both column-based coordination and predicate-based
coordination.

3.4 How Are Failures Handled?
Similar to database transactions, ad hoc transactions also

need to handle failures caused by deadlocks, failed valida-
tion, database failure, and web server crashes.

Finding 5. All pessimistic ad hoc transactions do not en-
counter deadlocks as they all acquire locks in the same order.
Most optimistic ad hoc transactions (19/26 cases) directly return
an error to the user on failed validation.

Automated Rollback vs. Manual Rollback. We first con-
sider failures without any crashes. These failures are usually
caused by deadlocks or validation failures. Each pessimistic
ad hoc transaction either uses a single lock (52/65) or ac-
quires locks in a consistent order (13/65). Thus, none of
them needs to handle deadlock at runtime. As for optimistic
ad hoc transactions, 19 cases directly return an error to end
users on validation failures without persisting any update.
In other cases, non-critical updates are issued before the
validation phases, which requires rollbacks upon validation
failures. Optimistic ad hoc transactions either use certain
rollback methods to negate the effect of updates or use repair
techniques to “roll forward” and commit changes.

Rollback methods in ad hoc transactions are either based
on (i) database transactions’ atomicity property or (2) hand-
crafted rollback procedures. There is 1 case using the former
method. It uses a database transaction with Read Commit-
ted isolation to enclose update and validation statements.
A user-initiated abort is issued to terminate the database
transaction and roll back updates if the validation fails.
Meanwhile, 2 cases are equipped with manually written roll-
back procedures. These procedures are triggered by valida-
tion failures and will undo persisted updates.

Meanwhile, 4 cases choose to repair the inconsistent values
instead of rolling back on conflicts. This idea relies on devel-
opers’ knowledge of program dependency and is similar to
the transaction repair optimizations [16, 3]. For example, in

Discourse, multiple posts can reference the same image and
thus image changes must be applied to all relevant posts. In
the course of a background image shrinking job, if a refer-
encing post is updated by the user, instead of aborting the
whole process, Discourse uses per-post versions to identify
the changed post, only redoes updates for it, and commits
the image shrinking process.

Crash Handling. Failures caused by crashes can be further
divided into two categories: (i) database system crashes and
(ii) application server crashes. When the former occurs, ap-
plication server-side database drivers will detect connection
loss and throw runtime exceptions to notify the application
to perform failure handling after database system recovery,
as we previously discussed.

However, rollback statements for ongoing ad hoc transac-
tions cannot be issued when the latter occurs. To correctly
resume service after application reboot, applications need
to ensure that locks acquired before crashes will not cause
deadlocks, and application logic can tolerate potential in-
termediate database states. It is easy to avoid deadlocks:
except in one Broadleaf case, lock information does not
persist—they either vanish along with crashes (in-memory
locks) or expire after a given period (Redis locks). In Broadleaf,
locks are persisted in a database table, accompanied with
universally unique identifier (UUID) that distinguishes each
application start-up. Thus, Broadleaf can ignore prior un-
released locks after reboot by examining the saved UUIDs.

Meanwhile, the fact that many cases skip rollback (§3.4)
indicates that applications might be designed to tolerate in-
termediate states to a certain extent. For example, every
twelve hours, Discourse checks and fixes inconsistent refer-
ences, such as missing avatars, thumbnails, and topics. How-
ever, whether these checks are sufficient to ensure (eventual)
recoveries to a consistent state is in question.

4. CORRECTNESS ISSUES
The variety of implementation possibilities as we discuss

in §3 indicates that building correct ad hoc transactions is
nontrivial. This section examines the correctness issues of
ad hoc transactions and relates them to the design char-
acteristics. We have manually verified that all issues are
reproducible and cause user-noticeable consequences.

In summary, 69 correctness issues are found in 53 cases;
some cases have multiple issues. Furthermore, 28 cases have
severe consequences (Table 2), such as charging customers
incorrect amounts. Most issues relate to the primitives’ us-
age and implementations (49/69), while others occur in the
choosing of what to coordinate (16/69) and handling abort
(4/69). We have submitted 20 issue reports (covering 46
cases2) to developer communities; 7 of them (covering 33
cases) have been acknowledged.

4.1 Incorrect Locks and Validation Procedures
Finding 6. 36 out of 65 pessimistic ad hoc transactions in-

correctly implement or use locking primitives; 11 out of 26 opti-
mistic ad hoc transactions fail to provide atomic validation and
commit, causing correctness issues.

Incorrect Lock Usage. When developers reuse existing sys-
tems’ locking primitives, misuses arise. Both two reused

2Some affected cases can be resolved in one code patch.

12 SIGMOD Record, March 2023 (Vol. 52, No. 1)

App. Known severe consequences Cases
Discourse Overwritten post contents, page rendering failure, exces-

sive notifications.
6

Mastodon Showing deleted posts, corrupted account info., incorrect
polls.

4

Spree Overcharging, inconsistent stock level, inconsistent order
status, selling discontinued products.

9

Broadleaf Promotion overuse, inconsistent stock level, inconsistent
order status, overselling.

6

Saleor Overcharging. 3

Table 2: Consequences of incorrect ad hoc transactions.

existing locking primitives, database systems’ Select For Up-
date statements and Java’s synchronized keyword (§3.2), have
corresponding cases of incorrect usage. For example, in some
Spree cases, Select For Update statements are not explic-
itly enclosed inside database transactions, which causes the
database lock to release as soon as the statement returns.

Another type of misuse happens when developers intend
to use a single lock to coordinate RMW operations: they
omit the coordination on the first query statement. Specifi-
cally, though ad hoc transactions intend to acquire locks to
coordinate all RMW data accesses, sometimes the lock key,
e.g., an ID, is known after the data is fetched. In these sit-
uations, developers need to re-read the data after acquiring
the lock to coordinate the entire RMW. There are 2 cases
where the developers forget the re-read, leaving the initial
read in RMW uncoordinated.

Incorrect Lock Implementation. The locking primitives im-
plemented by developers can also have correctness issues,
especially those using Redis or in-memory lock tables. For
example, the Redis lock in Mastodon implement the lease
semantics, where the lock might be released early when the
entry times out before the coordinated critical section fin-
ishes. Unfortunately, Mastodon does not check whether the
lock has expired early and experiences inconsistency, such
as deleted posts appearing in followers’ timelines.

Non-Atomic Validate-and-Commit. Validation-based optimistic
ad hoc transactions need to avoid conflicting updates be-
tween validation and commit. Thus, they need to guarantee
validate-and-commit atomicity. However, atomicity viola-
tion happens only when developers manually implement val-
idation procedures (16 cases); cases using ORM-generated
validation procedures we studied are all correct.

4.2 Incorrect Coordination Scope
Finding 7. 16 issues arise from incorrect coordination

scope. Specifically, developers either omit some critical opera-
tions in existing ad hoc transactions (11/16) or forget to employ
ad hoc transactions for certain business procedures altogether
(5/16).

Omitting Critical Operations. Though the flexibility of choos-
ing what to coordinate is an advantage of ad hoc transac-
tions (§3.1), it comes with an increased chance of leaving
critical operations uncoordinated. For example, in Broadleaf,
the ad hoc transaction that coordinates the check-out pro-
cess omits coordination for all SKU-related operations. As
a result, concurrent check-outs for the same SKU can lead
to inconsistency between the SKU quantity decrement and
the number of sold items.

Forgetting Ad Hoc Transactions. Forgetting to coordinate

certain business logic with transactions is a general problem
with both ad hoc and database transactions. However, it is
more disastrous with ad hoc transactions. A conflicting busi-
ness procedure (e.g., a request handler) without proper ad
hoc transactions installed can freely interleave with other ad
hoc transaction–coordinated procedures, reading and writ-
ing “coordinated” data. For example, in Spree, all ad hoc
transactions are deployed in the request handlers that re-
turn HTML responses. However, another uncoordinated set
of handlers with the same functionality exists and produces
JSON responses. As a result, JSON handlers’ interleaving
with HTML handlers leaves RDBMS states inconsistent.

4.3 Incorrect Failure Handling
Finding 8. A minority of issues come from complex coordi-

nation, all related to customized failure handling.

Incomplete Repair. When using transaction repair to “roll
forward” an affected transaction, developers might derive an
incomplete repair, such that not all affected operations are
re-executed. In Discourse, when updating image references
of posts, developers use versions to detect concurrent mod-
ification to fetched posts that use a given image (shown in
§3.4). However, their implementation cannot detect newly
added posts referencing this image. These new posts will
end up having dangling image references, showing end-users
broken links. There is the only one case that has this issue.

Unexpected Intermediate States after Crashes. If an applica-
tion is not designed to tolerate intermediate database states
and rollback handlers fail to prevent intermediate states, it
might fail to provide normal services if crashes occur. For
example, in Spree, a crash during check-out can leave pay-
ments in an intermediate state (i.e., having the status column
equalling “processing”). Since these payments are not rolled
back after reboot, Spree can neither initiate new payment
operations due to the unfinished ones nor resume payments
initiated before the crash because they are considered being
“processing” by active threads. Therefore, users can never
finish the check-out. There are 3 cases with similar issues.

5. PERFORMANCE SUMMARY
This section briefly summarize the performance of differ-

ent designs and implementations of ad hoc transactions us-
ing actual application codebases. We refer readers to [13]
for more details. First, there are order-of-magnitude perfor-
mance differences between different primitive implementa-
tions. Disk I/Os and network round trips are the decisive
factors. Second, all four customized coordination granulari-
ties benefit API performance. Ad hoc transactions perform
up to 1.3× better than database transactions in contentious
workloads and similarly in no contention workloads. Fi-
nally, for rollback performance, transaction repair achieves
the lowest latency among other rollback methods.

6. DISCUSSION
We have observed that ad hoc transactions are error-prone

and difficult to identify and understand, but they are still
widely used in critical APIs. Thus, we believe more study
is required to understand why developers use ad hoc trans-
actions instead of other more modular approaches such as
database transactions. For example, are database transac-
tions too inefficient, inconvenient to use, or lacking critical

SIGMOD Record, March 2023 (Vol. 52, No. 1) 13

Coordination
hints Oracle MySQL,

MariaDB
SQL Server,
Azure SQL PostgreSQL IBM Db2

Explicit table locks ✓ They have different restrictions (e.g., syntax) and
behaviors (e.g., lock modes and conflict handling)Explicit row locks

Explicit user locks ✓ ✓ ✓

Other lock hints Instance
lock

Priority in
deadlock
handling

Set default
granularity

Per-op isolation ✓ ✓

Savepoints ✓ They differ in syntax and duplicate name handling

Other trans. hints Autono-
mous trans.

Nested
trans.

Table 3: Coordination hints supported by the top ten ranking
RDBMSs. SQLite (6th), MS Access (7th), and Apache Hive
(10th) are skipped due to the lack of support for transactions
and/or coordination hints.

functionalities? Different answers lead to different future
database research directions. One potential answer is the
lack of critical functionalities. As described in §3.1, certain
coordinated business logic exposes characteristics difficult
or impossible for database transactions to handle, such as
multiple storage backends. For example, database transac-
tions surely fall short when business procedures access mul-
tiple storage backends (§3.1). Developers have expressed
similar concerns [13]. Another potential reason lies in the
performance—we have found that ad hoc transactions could
perform better than database transactions under contentious
workloads (§5). Likewise, developers have expressed perfor-
mance concerns, e.g., they want to avoid LLTs [13].

Meanwhile, many existing database systems provide in-
terfaces for passing hints that customize the coordination.
For example, PostgreSQL provides explicit user locks, where
locks are identified by user-specified integers and scoped by
the active session or transaction. However, can they help
developers write ad hoc transactions or even replace them?
To answer this question, we surveyed the supported coor-
dination hints among the top ten ranking RDBMSs3 and
found that they can in part prevent errors while retaining
the benefits (Table 3). For example, to coordinate only spe-
cific database operations (§3.1), we can augment them with
the HOLDLOCK explicit locking hints from SQL Server in-
side a Read Committed database transaction. As a result,
applications only pay the performance cost of ensuring con-
sistency for specific operations, and developers potentially
have less mental burden due to fewer ad hoc constructs.

However, not all ad hoc transactions can benefit from
these coordination hints, e.g., OCC primitives are absent.
Meanwhile, database systems usually support only a subset
of the listed hints, and for the same type of hints, they might
exhibit different semantics. For example, in MySQL, if any
table is explicitly locked, accesses to non-explicitly-locked
tables are denied; other database systems do not have this
restriction. Furthermore, the tight coupling of ad hoc trans-
actions and business logic makes migration nontrivial. In
short, existing database systems have provided some but
not all necessary utilities to address application demands
embodied in ad hoc transactions. Thus, we believe that
new abstractions and tools are needed. They should include
(i) primitives for optimistic ad hoc transactions, (ii) proxy
module for existing database coordination hints, and (iii)
development support tools. We refer interested readers to

3https://db-engines.com/en/ranking

Feral CC [1] ACIDRain [15] This work

Target ORMs’ invariant
validation APIs DB transactions Ad hoc transactions

Aspects Characteristics
Correctness Correctness

Characteristics
Correctness
Performance

Issue
types Insufficient isolation Insufficient isolation

Wrong trans. scope

Wrong sync. primitives
Wrong trans. scope
Wrong failure handling

Table 4: Comparison with Feral CC and ACIDRain.

[13] for a more detailed discussion.

7. RELATED STUDIES
Researchers have studied how database-backed web appli-

cations handle concurrency. The major difference between
these works and ours lies in the coordination approach be-
ing studied. Consequently, we examine different aspects and
have arrived at new and interesting findings.

Bailis et al. [1] studied how Rails applications adopt in-
variant validation APIs to handle concurrency. They have
found that application-level invariant validations are used
much more often than database transactions. Furthermore,
using invariant confluence [2], they have found that the ma-
jority of the validations are sound, i.e., they preserve invari-
ants even under concurrent execution using weak isolation
levels such as Read Committed, while the remainders do not.

Warszawski and Bailis [15] focused on the correctness of
database transaction usages in web e-commerce applications.
They analyzed SQL logs to identify non-serial API exe-
cutions that potentially violate application invariants. By
manual inspection, they have identified 22 bugs caused by
insufficient isolation levels and incorrect transaction scopes.

Meanwhile, Xiong et al. [17] surveyed another type of
manual coordination—ad hoc loops over synchronization vari-
ables in multi-threaded C/C++ programs. Unlike (ad hoc)
transactions, ad hoc loops provide low-level mutual exclu-
sion to help programs safely access shared in-memory vari-
ables instead of transactional isolation for accessing external
databases. Despite the differences with ad hoc transactions,
Xiong et al. have found that ad hoc loops can also have
diverse implementations and are prone to correctness issues.

8. CONCLUSION
This paper presents the first comprehensive study of real-

world ad hoc transactions. We examined 91 cases from 8
popular open-source web applications and identified the per-
vasiveness and importance of ad hoc transactions. Ad hoc
transactions are much more flexible than database transac-
tions, which is a double-edged sword—they potentially have
performance benefits but are prone to correctness issues.

9. ACKNOWLEDGMENTS
We appreciate the insightful discussions we had with Zhou

Zhou and Jiahuan Shen at various stages of this project and
the constructive feedback from SIGMOD ’22 reviewers. This
work is supported by the National Natural Science Founda-
tion of China under Grant Nos. 61902242, 62132014, and
62172272 and the HighTech Support Program from Shang-
hai Committee of Science and Technology under Grant No.
20ZR1428100. Zhaoguo Wang (zhaoguowang@sjtu.edu.cn)
is the corresponding author.

14 SIGMOD Record, March 2023 (Vol. 52, No. 1)

10. REFERENCES
[1] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M.

Hellerstein, and I. Stoica. Feral concurrency control:
An empirical investigation of modern application
integrity. In SIGMOD ’15.

[2] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M.
Hellerstein, and I. Stoica. Coordination avoidance in
database systems. Proc. VLDB Endow., 8(3):185–196,
Nov. 2014.

[3] M. Dashti, S. Basil John, A. Shaikhha, and C. Koch.
Transaction repair for multi-version concurrency
control. In SIGMOD ’17.

[4] Z. Dong, C. Tang, J. Wang, Z. Wang, H. Chen, and
B. Zang. Optimistic transaction processing in
deterministic database. Journal of Computer Science
and Technology, 35(2):382–394, Mar. 2020.

[5] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L.
Traiger. The notions of consistency and predicate
locks in a database system. Commun. ACM,
19(11):624–633, Nov. 1976.

[6] H. Garcia-Molina and K. Salem. Sagas. SIGMOD
Rec., 16(3):249–259, Dec. 1987.

[7] J. R. Jordan, J. Banerjee, and R. B. Batman.
Precision locks. In SIGMOD ’81.

[8] H. T. Kung and J. T. Robinson. On optimistic
methods for concurrency control. ACM Trans.
Database Syst., 6(2):213–226, June 1981.

[9] C. Li, J. Leitão, A. Clement, N. M. Preguiça,
R. Rodrigues, and V. Vafeiadis. Automating the
choice of consistency levels in replicated systems. In
USENIX ATC ’14.

[10] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça,
and R. Rodrigues. Making geo-replicated systems fast
as possible, consistent when necessary. In OSDI ’12.

[11] T. Neumann, T. Mühlbauer, and A. Kemper. Fast
serializable multi-version concurrency control for
main-memory database systems. In SIGMOD ’15.

[12] C. Pu, G. E. Kaiser, and N. C. Hutchinson.
Split-transactions for open-ended activities. In VLDB
’88.

[13] C. Tang, Z. Wang, X. Zhang, Q. Yu, B. Zang,
H. Guan, and H. Chen. Ad hoc transactions in web
applications: The good, the bad, and the ugly. In
SIGMOD ’22.

[14] S. Tu, W. Zheng, E. Kohler, B. Liskov, and
S. Madden. Speedy transactions in multicore
in-memory databases. In SOSP ’13.

[15] T. Warszawski and P. Bailis. ACIDRain:
Concurrency-related attacks on database-backed web
applications. In SIGMOD ’17.

[16] Y. Wu, C.-Y. Chan, and K.-L. Tan. Transaction
healing: Scaling optimistic concurrency control on
multicores. In SIGMOD ’16.

[17] W. Xiong, S. Park, J. Zhang, Y. Zhou, and Z. Ma. Ad
hoc synchronization considered harmful. In OSDI ’10.

SIGMOD Record, March 2023 (Vol. 52, No. 1) 15

