
Mercury: Combining Performance with Dependability Using Self-virtualization ∗

Haibo Chen,Rong Chen,Fengzhe Zhang,Binyu Zang
Parallel Processing Institute

Fudan University
{hbchen,chenrong,fzzhang,byzang}@fudan.edu.cn

Pen-Chung Yew
Dpt. of Computer Science and Engineering

University of Minnesota at Twin-Cities
yew@cs.umn.edu

Abstract

There has recently been increasing interests in using
system virtualization to improve the dependability of HPC
cluster systems. However, it is not cost-free and may come
with some performance degradation, uncertain QoS and
loss of functionalities. Meanwhile, many virtualization-
enabled features such as online maintenance and fault tol-
erance do not require virtualization being always on. This
paper proposes a technique, called self-virtualization, that
supports dynamically attaching and detaching a full-fledged
virtual machine monitor (VMM) beneath an operating sys-
tem, without disturbing applications thereon, and rid the
system of potential overhead when the virtualization is
not needed. This technique enables HPC clusters to reap
most benefits from virtualization without sacrificing perfor-
mance. This paper presents the design and implementa-
tion of Mercury, a working prototype based on Linux and
Xen VMM. Our performance measurement shows that Mer-
cury incurs very little overhead: about 0.2 ms to complete a
mode switch, and negligible performance degradation com-
pared to Linux.

1. Introduction

In the past few years, virtualization [10] has gained a
resurgent popularity. Being aware of the benefits from sys-
tem virtualization in improving system dependability, there
has been a recent trend in applying it to high-performance
computing (HPC) systems [17, 25, 5] and cluster computing
[12, 13].

However, virtualization is not cost-free. Most general
virtualization techniques usually bring some performance
degradation [16, 15, 19] due to the additional layer of ab-
straction (i.e. VMM). For example, a recent measurement
[21] indicates that SMP virtual machines have poor scala-
bility that the performance for a 16-way SMP guest virtual

∗This work was funded by the 973 Plan under grant numbered
2005CB321905 and Intel University Research Grant.

machine is even not comparable to a uni-processor virtual
machine. Such abstraction may also incur uncertain QoS
(e.g. latency) for some highly concurrent services [18], con-
flict with assumptions for nowadays software and hardware
architectures [8] (e.g. inconsistent disk storage in VMware
[24]) and restrict functionalities due to restricted interface
supported by VMMs.

Meanwhile, many virtualization-enabled features for de-
pendability are only required occasionally. They include
online hardware/software maintenance [14], checkpointing
and restarting of operating systems [9, 22], live updating
operating system kernels [6], among others. As an illus-
tration, for online software maintenance, the VMM is only
required during the maintenance process [14]. Placing a
VMM beneath the operating system all the time will incur
unnecessary performance degradation.

Being aware of unnecessary overhead of virtualization,
Lowell et al. proposed Microvisor [14] for online software
maintenance without an always-on VMM in a cluster en-
vironment. Facilitated by ALPHA architecture and redun-
dant hardware, Microvisor supports at most two virtual ma-
chines and no memory and I/O virtualization. However, as
a hardware-based VMM, Microvisor is tightly bounded to
ALPHA and does not provide a general solution.

This paper proposes ”self-virtualization”, or ”on-
demand virtualization”, a general software-only framework
to avoid virtualization overhead during normal operations.
This technique aims to eliminate the overhead induced by
virtualization during normal execution, yet enjoys most of
its benefits when needed. It enables an operating system to
virtualize itself, as needed, through dynamically attaching
a full-fledged virtual machine monitor(VMM) underneath,
and detaching it when no longer needed. The added VMM
can function as a normal full-fledge hypervisor that supports
most general functions of a VMM. The virtualizing process
is reversible so that the operating system can quickly switch
its execution to run on a VMM and bare hardware.

We have built a working prototype, named Mercury, to
provide self-virtualization capability to Linux running on
Xen [4], a popular open-source VMM. To render our so-

lution more general and portable, Mercury is implemented
by extending the virtual machine interface [23, 3], allowing
Mercury independent of operating system evolutions to a
great extent. According to our performance measurements,
switching Linux between virtual mode (i.e. running on a
VMM) and native mode (i.e. running on bare hardware) can
be done in about 0.2 ms without disturbing the running ap-
plications. Performance benchmarks show that Mercury in
native mode incurs negligible performance overhead com-
pared to native (i.e. unmodified) Linux.

The rest of this paper is organized as follows: in next
section, we compare Mercury with existing systems; Sec-
tion 3 describes the overall design of the framework. Sec-
tion 4 discusses the implementation issues. Then we bring
out the experiment results of Mercury in section 5. Finally,
we close the paper with a brief conclusion.

2. Related Work

While there are many systems and innovations for sys-
tem virtualization, our work mainly differs from the pre-
vious efforts in two aspects. First, Mercury is one of the
first (if not the first) systems that allow an operating system
to dynamically attach and detach a full-fledged VMM un-
derneath. Second, the approach advocated by Mercury is
purely software-based and requires no dedicated hardware
support, which yields good portability and compatibility.

The most relevant work is Microvisor [14] developed at
HP. Microvisor is a lightweight hardware-based VMM. It
supports de-virtualizing and re-virtualizing the CPU state
of the underlying Alpha 21264 microprocessor, and uses
redundant hardware to support I/O partitioning with no sup-
port for memory virtualization. At most two VMs could be
supported. It is dedicated to online software maintenance.
This approach is tightly bound to the Alpha architecture and
thus lacks both portability and scalability. Further, Microvi-
sor is too lightweight to support more general virtualization
techniques such as live migration [7], checkpoint/restart [9]
and the ability to host multiple operating systems. In con-
trast, Mercury allows dynamically attaching and detaching
a robust, full-fledged VMM, hence, it provides higher porta-
bility, scalability and robustness.

Virtual machine interface (VMI) [3] is a para-
virtualization interface proposed by VMware, aiming to im-
proving the portability and maintainability of existing virtu-
alization solutions. Paravirt-ops [23] achieves OS portabil-
ity by providing separate operation sets for Linux running
on bare hardware and VMMs. However, their solutions al-
low no dynamically attaching and detaching a VMM under-
neath. Mercury is implemented in a similar way to VMI and
Paravirt-ops, with additional support to in-flight attaching
and detaching of a VMM underneath an running operating
system.

Hardware vendors have also shipped hardware extension
aiming to lower the virtualization overhead, such as Intel’s
Vanderpool [11] and AMD’s Pacifica [2]. However, a re-
cent study [1] indicates that existing hardware virtualization
supports show little performance advantage over software-
based virtualization system.

3. Self-virtualization of Operating Systems

This section presents a general framework of Mercury.
We begin with the key difference between an operating sys-
tem on bare hardware (native OS) and that on a VMM (vir-
tualized OS), followed by key issues in providing an oper-
ating system with self-virtualization capabilities. Then, we
present the general architecture of Mercury.

3.1. Mode Switch Between a Native OS and
a Virtualized OS

Conventional operating systems lie in the lowest layer
of the software stack, with direct control over hardware
like CPU, memory and I/O devices. In contrast, in a vir-
tualized environment, the VMM manages all hardware re-
sources and exposes them to operating systems thereon in
the form of virtual machines 1. Hence, some portions of
operating system code behaves differently between a native
OS and a virtualized OS. We clarify the key differences to
facilitate the implementation of mode switches of the op-
erating systems. Here, a mode switch refers to a transition
of the operating system execution between native mode and
virtual mode, which requires an adjustment of OS code and
data to suite the corresponding execution mode.

3.1.1 CPU Privilege Level

Modern computers usually provide some protection mecha-
nisms to prevent arbitrary accesses to hardware state. Most
hardware state is accessible only in the most privileged
level via privileged instructions. General virtualization
techniques usually involve de-privileging operating systems
[4, 20]: making VMMs executing at the most privileged
level and leaving operating systems to execute at less privi-
leged levels.

Hence, operating systems running in virtual mode and
native mode differ in their privilege levels and their means
to access the hardware resources. Therefore, some portions
of operating system code behaves differently in different ex-
ecution modes. This is especially true for virtualization sen-
sitive code and data. Virtualization sensitive data stores
the hardware control state and operating systems control

1Here, we only focus on VMMs which directly execute on bare hard-
ware. VMMs running on a host operating system (e.g. VMWare worksta-
tion) are beyond the scope of this paper.

state that varies in different execution modes, such as CPU
control state and page tables. Virtualization sensitive code
refers to the code that manipulates such data structures, ex-
amples include sensitive instructions and operations on sen-
sitive memory(e.g. page table updates). When running on
bare hardware, operating systems directly execute the vir-
tualization sensitive code; while operating systems execute
on VMMs, they have to rely on the services provided by the
VMMs.

3.1.2 Address Space Layout

For a self-virtualization system, an operating system in vir-
tual mode differs from its native counterpart in both virtual
address space and physical address space. Generally, OS
kernel and a user process reside at the same virtual address
space. In a virtualized system, a VMM coexists with the
OS kernel and user processes. As in a computer (such as
x86) with hardware-managed TLB, flushing TLB due to ad-
dress space switches is rather costly, modern virtualization
techniques usually place the VMM, OS kernel and a user
process in a single address space. For example, Xen VMM
occupies the top 64-MB virtual address in a single 4-GB
virtual address space. Therefore, for a virtualized OS, the
kernel address space layout is different from a native OS. As
a dynamic adjustment of the address space layout is rather
time consuming, Mercury instead unifies the address space
layout to achieve a smooth transfer between native mode
and virtual mode, by reserving a fixed portion of virtual ad-
dress space for the VMM.

For physical address space, most commodity operating
systems assume the continuity of the whole physical mem-
ory. However, in a virtualized environment, as there are
multiple operating systems, their physical memory are dis-
continuous. To ensure correct system behavior, two phys-
ical address modes are available in modern virtualization
systems: shadow mode and direct mode. In shadow mode,
a VMM presents the guest operating systems an illusion
of contiguous pseudo-physical memory and is responsible
for translating pseudo-physical memory to physical mem-
ory. Thus, a translation from pseudo-physical memory to
physical memory is required during a self-virtualization. In
direct mode, a VMM provide direct accesses to page tables
for guest operating systems: page tables in guest operat-
ing systems are directly installed in MMU but only read
accesses are granted. As the page table entries in guest op-
erating systems are directly installed in hardware, no trans-
lation is required during a mode switch, which could largely
reduce the complexity of implementing a self-virtualization
system. Currently, Mercury utilizes the direct access mode
to simplify the implementation.

3.1.3 Memory Management

In a virtualized environment, a VMM should track the us-
age of all pages to ensure strict isolation among virtual ma-
chines. Consequently, when transferring an OS between
native mode and virtual mode, Mercury should ensure the
consistency of VMM’s memory management information.
In addition, the access mode to the MMU differs between a
native OS and a virtualized OS. A native OS can directly ac-
cess all MMU, while a virtualized OS should rely on the ser-
vices of a VMM. For example, updates to page tables could
be directly done in native mode, while in virtual mode, they
need to either invoke the interface provided by VMMs or
rely on a trap-emulation service in VMMs.

3.1.4 I/O Access Modes

A fully virtualized OS usually has no direct control over I/O
devices. A VMM is in charge of managing the I/O devices
and exposing them to operating systems either via implicit
trap and emulation [20] or via explicit services [4]. As I/O
emulation tends to be time-consuming, for the sake of per-
formance, device drivers in a para-virtualized OS are usu-
ally modified to explicitly invoke the interface provided by
the VMM. For example, Xen provide a splitted I/O mode
[4] in a frontend/backend manner for device accesses in a
virtual machine.

3.2 Key Issues in Self-virtualization of
Operating Systems

Being aware of the differences between a native OS and
a virtualized OS, we identify several key aspects in self-
virtualizing an operating system as follows.

3.2.1 Pre-caching of VMMs

The major challenge in the design and implementation of
Mercury is to dynamically attach and detach a VMM be-
neath a running operating system, without disruption to the
running applications. Mercury accomplishes this through a
simple and common hardware mechanism: interrupt. The
interrupt handler dedicated to self-virtualization contains
routines to attach and detach a VMM on-the-fly. Execution
mode switches can be done through triggering the corre-
sponding interrupt line.

However, handling such interrupts should not be time-
consuming; otherwise, other interrupts might be delayed or
missed. Therefore, it is crucial that the interrupt handlers be
very efficient. To satisfy such a requirement, it is unrealistic
to boot a complete VMM on the fly. Instead, this process
is optimized by warming up the VMM during the machine
boot, and adding only a minimal amount of work to provide
necessary state for hardware when the VMM is attached. As

a VMM occupies only a reasonably small chunk of memory,
we believe it is worthy for such space-time tradeoff because
it shortens the mode switch time from several seconds to
several sub-milliseconds.

The Pre-cached VMM already contains most required
data structures in memory. The only data structures re-
quired to be adjusted are those maintaining the state of the
virtual machines thereon, including the in-time execution
context, memory page type and count information, and in-
terrupt bindings. All these data structures will be synchro-
nized by Mercury during a mode switch using state reload-
ing functions described in section 4.1.3.

3.2.2 Transparent Self-virtualization

As the virtualization sensitive code and data differ between
a native OS and a virtualized OS, a relocation of such code
and data is required during a mode switch. Further, to en-
sure the safety of self-virtualization, it is crucial to track
whether it is safe to perform a mode switch or not, so that
the kernel will not enter an undefined state in which some
portions of the code execute in the native mode and others
execute in the virtualized modes. Dynamic rewriting and
para-virtualization technologies are two possible methods.

Dynamic rewriting technique [1] replaces sensitive in-
structions in operating system kernels at execution time. It
could result in good OS transparency. However, deciding
whether it is safe to perform such rewriting is extremely
difficult. Further, binary rewriting all related code is rather
time-consuming for a mode switch.

In contrast, para-virtualization statically modifies OS
kernel to cooperate with VMM by replacing sensitive in-
structions with function calls to VMM. This approach will
result in short switch time, and it is easy to track whether it
is safe to perform a mode switch (e.g. by reference counting
entrance/exit from virtualization sensitive code). However,
such an approach will result in significant maintenance cost
during the operating system evolution.

Mercury chooses the para-virtualization approach but in
a portable and OS-transparent way similar to paravirt-ops
[23] and VMI [3]. Specifically, Mercury groups all virtual-
ization sensitive code and data, and defines a unified inter-
face: a virtualization object composed of a function table
and a data table. Mercury provides separate object imple-
mentation for operating systems executing in virtual mode
and native mode. Relocation of virtualization sensitive code
and data is done by changing the object pointer maintained
by the operating system.

3.2.3 Maintaining Behavior Consistency

To completely shadow running applications from these
mode transitions, the operating system should exhibit a con-
sistent behavior regardless of its current mode. Thus, there

are three requirements in ensuring behavior consistency:
first, for virtualization sensitive code, it is required to en-
sure that its execution is conformed to current mode, e.g.,
code for native mode should not execute in virtual mode;
second, for virtualization sensitive data, their state in each
execution mode should be semantically equivalent, which
requires they provide equivalent services to OS kernel and
applications; third, for hardware control state, such as con-
trol registers, page tables, description tables, it should be
reloaded accordingly during a mode switch. Details on how
Mercury ensures these requirements are presented in sec-
tion 4.1.

3.3 Architecture of Mercury

Figure 1. The architecture of Mercury.

Figure 1 depicts the architecture of Mercury. The key
to self-virtualization is a variety of virtualization objects
(VOes), which encapsulate virtualization sensitive code and
data. The VOes are neutral to operating system upgrades
but sensitive to VMM evolutions. The modularity of VOes
enhances the maintainability of Mercury as it allows easy
adaptation of Mercury to new VMMs and architectures.

To support a fast switch of operating systems from na-
tive mode to virtual mode, Mercury warms up a VMM dur-
ing system initialization and always keeps it in memory.
As generally a VMM is relatively small, the pre-cached
VMM actually creates very little memory pressure. A VO
instance in virtual mode relies on the services from pre-
cached VMM while a VO instance in native mode directly
manipulates the hardware. When an operating system is re-
located from native mode to virtual mode, the pre-cached
VMM is activated and takes over the hardware. The VO-
assistant is composed of some help routines in the VMM. It
provides services such as self-virtualization interrupt han-
dlers to assist the VO instances to maintain the state during
a mode transition.

4. Detailed Design and Implementation

We initially implemented Mercury based on Linux
2.6.10 running on Xen-2.0.5. Later, we port Mercury to
newly Xen-3.0.2. The hardware platform is x86 architec-
ture. We chose Xen as a base platform because of its open-
source nature and robustness. Although our current imple-
mentation was specific to Linux on Xen for x86, we believe
the architecture and the design of Mercury could be simi-
larly implemented on other operating systems, VMMs and
processor architectures.

The following subsections discuss some specific design
and implementation of Mercury. First, we present in detail
how to maintain a consistent state in a mode switch. Then,
we provide some specific design on dynamical virtualiza-
tion of I/O devices. Finally, we describe the implementation
of virtualization objects.

4.1. Maintaining Behavior Consistency

4.1.1 State Tracking of Virtualization Sensitive Code

Mercury tracks the execution of virtualization sensitive
code by reference counting the execution of a virtualization
object on its entry and exit.

Mercury applies a mode switch only when the reference
counter reaches zero. One potential problem is that mode
switch requests may sometimes fail if some counters is non-
zero at that time. However, due to the fact that almost all
execution in the virtualization object is short (because it is
non-blocking) or synchronous, this problem rarely happens.
If such a condition does occur, Mercury registers a timer to
the OS kernel. The timer checks if the reference counter
reaches zero in every time interval (e.g. every 10 ms). If so,
the mode switch will be safely committed.

4.1.2 State Transfer of Virtualization Sensitive Data
Structures

Mercury utilizes state transfer functions to efficiently trans-
fer the state of virtualization sensitive data from one mode
to the other during a mode switch, to ensure that they pro-
vide equivalent services.

There are several key sets of state in OS kernel that must
be transferred during a mode switch: (1) page table pages,
which are read-only in the virtualized modes while writable
in the native mode; (2) the privileged level of the kernel seg-
ment in each kernel thread, whose value is 0 in native mode
and 1 in virtualized modes; (3) the interrupt handlers and
interrupt bindings (e.g. APIC, I/O APIC), which directly
manipulate the hardware in the native mode while rely on
the service of VMMs in the virtual modes. Mercury pro-
vides a set of state transfer functions, which are responsible

for transferring the state of the virtualization sensitive data
structures during a mode switch.

Maintaining behavior consistency for VMM’s memory
management poses additional challenges. To ensure secure
isolation among guest operating systems, Xen provides a
rather complex page management interface and maintains
the owner, type and count information for each page frames.
When a VMM is active, it has to track the usage of all page
frames to ensure correct usage of each page. In native mode,
as the VMM is inactive it will lose track on the usage infor-
mation of these pages. Thus, it is required to correctly refill
these information for the VMM to enforce correct system
behavior. Generally, there are two alternatives to ensure the
consistency of the underlying VMM: one is to actively adapt
the count information in a VMM each time an OS modifies
its page tables; the other is to re-compute and synchronize
the information during a mode switch. The first approach
incurs some performance overhead in native mode, while
shortens some time during a mode switch.

We have implemented both approaches for the memory
management of Xen. According to our performance exper-
iment, the first approach will incur about 2%-3% perfor-
mance overhead and saves only a small amount of mode
switch time. Hence, we preferably choose the latter ap-
proach.

It should be noticed that some state cached in stack is not
easy to provide proper state transfer functions. In practice,
an interrupted thread will push their interrupt context in the
thread stack. The code and data segment selectors pushed
in the thread stack contain the privilege level information
of the operating system. If a mode switch occurs here, the
resumed thread will pop the saved segment selectors and
trigger a general protection fault. This problem is solved
by adding a code stub to check and fix the cached segment
selectors.

4.1.3 State Reloading of Hardware Control State

The state of the underlying hardware usually differs in dif-
ferent execution modes. Therefore, when switching from
a virtual mode back to the native mode, the control state
should be reloaded into the hardware accordingly. General
state includes the base pointer of a page table, interrupt ta-
bles, descriptor tables (e.g. GDT, LDT), among others.

Since the critical state of the hardware is modified in the
state reloading process, the reloading process must not be
interrupted. Hence, Mercury adds two interrupt handlers
for mode switches between the native mode and the vir-
tual mode, and applies the reloading in the interrupt context.
The interrupt handlers will reload the state, invoke the state
transfer functions to transfer the state of operating systems,
and return to operating systems.

However, the interrupt handlers are slightly different

from general interrupt service routines which return to the
previous privileged level after service completion. In Mer-
cury, VMMs and a native OS lie in the most privileged level
(e.g. PL0), while a virtualized OS executes in the next privi-
leged level (e.g. PL1). Therefore, there is a privileged-level
switch right after a mode switch. This is accomplished by
modifying the privileged level in the return stack of the in-
terrupt.

4.2. Self-virtualizing an SMP OS

Self-virtualizing a SMP-OS poses additional challenges
compared to a uni-processor OS. Processors should be co-
ordinated to avoid that they execute in different modes.
Mercury uses IPI (inter-processor interrupt) mechanism and
shared variables to control the mode switch of each proces-
sor.

The processor (CP, control processor) received the mode
switch request will notify other processors via issuing IPIs.
Upon receiving the IPI, each processor notifies its readiness
to other processors by increasing a shared count and waits
for a shared flag to ensure all other processors are ready
to do mode switch. The shared flag will be set by the CP
when it finds the shared count is equal to the total number
of processors. The completion of the mode switch is also
coordinated using a shared variable.

4.3. Device Virtualization

In Xen VMM, only driver domain (usually domain0) has
direct accesses to the hardware devices, while other pro-
duction domains (domainU) access the hardware through
the interface provided by domain0 in a frontend/backend
fashion: the frontend drivers in domainU serve the hard-
ware access requests by forwarding the requests to the back-
end drivers in domain0 using shared-memory I/O rings; the
backend drivers invoke services from the hardware to serve
the requests and forward the results back to the frontend
drivers in domainU; when the domainU is migrated, the
frontend drivers reconnect themselves to the new backend
drivers on the new host machine. Thus, the decoupling of
frontend/backend drivers provides the mobility to the device
drivers.

To host multiple VMs in the self-virtualized OS, the OS
serves as the driver domain and hosts the backend drivers.
For live migration of VMs, since current live migration sys-
tems often rely on networked file system, disk drivers are
essentially migratable. For network devices, since the pack-
ets loss during the migration could be solved at the network
protocol level, Mercury currently doesn’t decouple the net-
work device drivers before the migration. Instead, it creates
the frontend device drivers and connects them to the back-
end drivers after the migration has been completed.

4.4. Virtualization Object

Each VO instance is composed of the corresponding im-
plementation of virtualization sensitive code and data for
an execution mode, as well as some additional components
to support self-virtualization of an operating system. Such
components are responsible for relocating the execution of
operating systems in different execution modes and main-
taining the behavior consistency after a dynamic relocation
of virtualization instances. We have implemented a native
VO and a virtual VO for Linux and Xen VMM accordingly.
Each such VO is a structure with a set of function tables and
corresponding data in essence. The data in a VO includes
some global sensitive data, such as a set of control registers,
descriptor tables (IDT, GDT and LDT). The function tables
are composed of functions for virtualization sensitive code
and those for self-virtualization.

Functions for virtualization sensitive code are abstrac-
tions of sensitive operations: sensitive CPU operations,
which manipulate the privileged state of CPU, such as privi-
lege levels and interrupt flags; sensitive memory operations,
which modify page tables; sensitive I/O operations, which
access the device resources through memory-mapped I/O or
I/O port. A function in a native VO directly manipulates the
hardware while it invokes interfaces provided by the VMM
(e.g hypercalls in Xen VMM) in virtual mode. To main-
tain state consistence, all of these functions are reference-
counted to track the execution of operating systems in a VO.
Note that non-performance-critical sensitive code are not
included in a VO and relies instead on trap-and-emulation
to commit the effect.

Functions for self-virtualization consist of state-transfer
functions to transfer the state of virtualization sensitive data
structures during a mode switch, and state reloading func-
tions to relocate the execution mode of an operating system
and activate/deactivate the pre-cached VMM, as described
in section 4.1.3 and section 4.1.2.

5. Evaluation

In this section, we present the performance results of
Mercury. As our implementation is based on Xen VMM,
we test Mercury against Xen-Linux and native Linux run-
ning on bare hardware to assess overall performance of
Mercury. We compare the performance of Mercury-Linux
(Linux running on Mercury) in native mode and virtual
mode (M-N and M-V accordingly) against native Linux (N-
L) and Xen-Linux (both control domain, domain0 (X-0)
and production domain, domainU (X-U)). Since Mercury
allows a self-virtualized operating system to host unmodi-
fied Xen-Linux (M-U), we present its performance results
as well. Further, the timer frequency is 100Hz for all sys-
tems.

As it is crucial that switch time among different execu-
tion modes be minimal, we present the measured switch
time as well.

5.1. Experimental Setup

All experiments were conducted on a system equipped
with a 3.0GHz Pentium IV with 1GB SDRAM, a Realtek
r8169 1 Gigabit Ethernet NIC , and a single 250GB 7200
RPM SATA disk, with 20GB allocated to each Linux dis-
tribution. The version of Linux, Xen-Linux and Mercury-
Linux is 2.6.16 and the version of Xen VMM is 3.0.2. The
Fedora Core 2 distribution was used throughout. It is in-
stalled on ext3 file system. 900,000KB of memory is given
to each variant of Linux except unprivileged domain (i.e.
domainU). DomainU is configured to 870,000KB of mem-
ory as it relies on Domain0 to complete a device access.
Therefore, we decrease the memory reservation in domainU
to even this unfairness. The Linux running as the produc-
tion domain in both Xen and Mercury is configured to use
a 20GB partition in the same disk with the ext3 file system
as well. The disk is used in ”raw mode”, which is believed
to have the best performance.

For application level benchmarks, we present the perfor-
mance results for the Open Source Database Benchmark
suite(OSDB), dbench , Linux build time. OSDB evalu-
ates the performance of PostgreSQL database, with the test
for Information Retrieval (IR). For the experimental setup,
we used OSDB-x0.15-1 in conjunction with PostgreSQL
7.3.6. Dbench is a strict I/O bound benchmark, the version
used is 3.03. Linux build time measures the overall time
to built a Linux Kernel 2.6.16 with gcc-3.3.3. For micro-
benchmarks, we measured the lmbench benchmark of ver-
sion 3.0-a5, and report the results for the OS-related parts
for all seven systems. We also tested Unixbench 4.1.0 to
gain the overall system performance results. For network
performance, we used iPerf to measure the bandwidth with
TCP and UDP traffic, the client and server for iPerf were
connected through a Giga-bit switch. All benchmarks were
with their default configurations. In addition, we investi-
gated the time spent to apply each mode switch. All bench-
marks were tested 5 times and each result is an average of
them.

5.2. Overall Performance

Figure 2 depicts the overall performance of Mercury
against native Linux and Xen-Linux. Table 1 shows the OS-
related results of lmbench. Our measurements indicates that
although a variety of optimizations have been integrated
into Xen, there is still some performance degradation com-
pared to native Linux, especially for memory and I/O in-
tensive applications. For example, mmap in lmbench incurs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Linux-Build-Time
 Dbench
 OSDB-IR
 Iperf

R
e
l
a
t
i
v
e

s
c
o
r
e

t
o

L
i
n
u
x

N-L
 M-N
 X-0
 M-V
 X-U
 M-U

Figure 2. Relative Performance of Mercury
Against Linux and Xen-Linux

57% performance loss while for process creation the result
is 72%. For application level benchmarks, domain0 (X-0)
shows 10% performance degradation for dbench, while do-
mainU (X-U) incurs 30% performance loss. Both domain0
and domainU incur about 7% for Linux kernel build, and
20% for OSDB-IR. As the Xen architecture has evolved
dramatically in Xen2 and Xen3, the results are somewhat
biased with the early results of Xen [4]. However, our
results are mostly conformed to a recent measurement by
Soltesz et al. [19]. In contrast, the performance of Mer-
cury in its two modes is nearly the same compared to native
Linux, domain0 and domainU accordingly. The source of
performance loss in Mercury mainly lies in the changes to
code and data layout and function calls to virtualization ob-
jects. However, as shown in the figure, such overhead is
negligible.

5.3. Mode Switch Time

We measured the time to apply a mode switch by read-
ing the hardware cycle counter register (using the RDTSC
instruction) at both the beginning and the end of each mode
switch. Table 2 shows the time to apply a mode switch be-
tween native mode (N) and virtual mode in nanosecond. As
depicted in the table, the time spent in a mode switch is
relatively small: the average time is about 0.2 ms at most.

From the table, it can be seen that the time spent to
switch from native mode to virtual mode is much longer
than the time to switch back. This is expected, as mentioned
in section 4.1.2, Mercury has to recalculate the type and
count information for all page frames during a mode switch,
which accounts for the major time to commit a switch. Nev-
ertheless, the overall time is still relatively small and we
believe it is acceptable as we can gain good performance
during normal operations in native mode.

6 Conclusion

We have proposed a technique, called self-virtualization,
that enables an operating system to dynamically attach and

Config N-L M-N X-0 M-V X-U M-U
fork process 93 113 323 323 311 311
exec process 340 392 858 846 830 831
sh 1089 1220 2174 2158 2080 2082
ctx(2p/0k) 1.59 2.49 3.63 4.04 3.53 3.51
ctx(16p/16k) 2.29 3.56 4.38 5.30 4.24 4.36
ctx(16p/64k) 3.52 6.90 7.14 8.78 6.71 6.94
mmap 3380 3644 7778 7439 8406 8152
prot fault 0.55 0.61 0.92 1.01 0.97 0.98
page fault 1.19 1.48 2.64 2.66 2.59 2.57

Table 1. lmbench latency results - time in µs.

Mode Native to Virtual Virtual to Native
#1 199,800 59,517
#2 202,545 60,398
#3 206,192 62,630
#4 209,814 56,302
#5 233,268 59,943

avg. 210,234 59,758

Table 2. Time to apply a mode switch
– in nanosecond.

detach a full-fledged VMM underneath. This approach is
completely software-based and mostly OS-transparent. It
effectively eliminates unnecessary performance overhead
of system virtualization and thus combines performance
and dependability in applying system virtualization to HPC
clusters. Performance measurements show that such an im-
plementation incurs negligible performance overhead and
allows fast switches among different execution modes.

References

[1] K. Adams and O. Agesen. A comparison of software and
hardware techniques for x86 virtualization. In Proc. of
ASPLOS-XII, pages 2–13, 2006.

[2] Advanced Micro Devices. Secure virtual machine
architecture reference manual. www.amd.com/us-
en/assets/content type/white papers and tech docs/33047.pdf,
May 2005.

[3] Z. Amsden, D. Arai, D. Hecht, and P. Sub-
rahmanyam. Virtual machine interface (vmi).
http://www.vmware.com/interfaces/, March 2006.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. In Proc. of SOSP’03, pages 164–177. ACM,
2003.

[5] H. Bjerke. HPC Virtualization with Xen on Itanium. Master’s
thesis, NTNU, July 2005.

[6] H. Chen, R. Chen, F. Zhang, B. Zang, and P.-C. Yew. Live
updating operating systems using virtualization. In Proc. of
VEE’06, pages 35–44, Ottawa, Canada, June 2006.

[7] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration of vir-
tual machines. In Proc. of NSDI, pages 273–286, 2005.

[8] T. Garfinkel and M. Rosenblum. When Virtual is Harder than
Real: Security Challenges in Virtual Machine Based Com-
puting Environments. In HOTOS-X, 2005.

[9] H. O. Geoffroy Vallee, Thomas Naughton and S. L. Scott.
Checkpoint/restart of virtual machines based on xen. In
HAPCW 2006, Santa Fe, NM, USA, October 2006.

[10] R. Goldberg. Survey of Virtual Machine Research. IEEE
Computer, 7(6):34–45, 1974.

[11] Intel Cooperation. Intel vanderpool technology for IA-32
processors (VT-x) preliminary specification.
http://www.intel.com/technology/computing/vptech/.

[12] N. Kiyanclar. A Survey of Virtualization Techniques Fo-
cusing on Secure On-Demand Cluster Computing. Arxiv
preprint cs.OS/0511010, 2005.

[13] N. Kiyanclar, G. Koenig, and W. Yurcik. Maestro-VC: A Par-
avirtualized Execution Environment for Secure On-Demand
Cluster Computing. In Proc. of CCGRID’06, 2006.

[14] D. Lowell, Y. Saito, and E. Samberg. Devirtualizable virtual
machines enabling general, single-node, online maintenance.
In Proc. of ASPLOS-XI, pages 211–223, 2004.

[15] A. Menon, A. L. Cox, and W. Zwaenepoel. Optimizing net-
work virtualization in xen. In Proc. of Usenix’06, pages 15–
28, 2006.

[16] A. Menon, J. Santos, Y. Turner, G. Janakiraman, and
W. Zwaenepoel. Diagnosing performance overheads in the
xen virtual machine environment. In Proc. of VEE’05, pages
13–23, 2005.

[17] M. Mergen, V. Uhlig, O. Krieger, and J. Xenidis. Virtualiza-
tion for high-performance computing. ACM SIGOPS Oper-
ating Systems Review, 40(2):8–11, 2006.

[18] P. Padala, X. Zhu, Z. Wang, S. Singhal, and K. G. Shin. Per-
formance evaluation of virtualization technologies for server
consolidation. Technical Report HPL-2007-59, HP, 2007.

[19] S. Soltesz, H. Potzl, M. Fiuczynski, A. Bavier, and L. Peter-
son. Container-based operating system virtualization: a scal-
able, high-performance alternative to hypervisors. In Proc. of
EuroSys, 2007.

[20] J. Sugerman, G. Venkitachalam, and B. Lim. Virtualizing
I/O devices on VMware workstation’s hosted virtual machine
monitor. In Proc. of USENIX’01, pages 1–14, 2001.

[21] A. Theurer, K. Rister, O. Krieger, R. Harper, and S. Dobbel-
stein. Virtual Scalability: Charting the Performance of Linux
in a Virtual World. In Proc. of Linux Symposium, 2006.

[22] VMware. The VMWare software package. See
http://www.vmware.com, 2006.

[23] C. Wright. Para-virtualization interfaces.
http://lwn.net/Articles/194340/, G 2006.

[24] J. Yang, C. Sar, and D. Engler. Explode: A lightweight,
general system for finding serious storage system errors. In
Proc. of OSDI’06, pages 131–146, 2006.

[25] L. Youseff, R. Wolski, B. Gorda, and C. Krintz. Paravirtu-
alization for HPC Systems. Technical Report 2006-10, CSE,
UCSB, Aug. 2006.

