
Bipartite-oriented Distributed Graph Partitioning for Big Learning

Rong Chen†, Jiaxin Shi†, Binyu Zang†, Haibing Guan§
Shanghai Key Laboratory of Scalable Computing and Systems

†Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

§Department of Computer Science, Shanghai Jiao Tong University

{rongchen, shijiaxin, byzang, hbguan}@sjtu.edu.cn

abstract

Many machine learning and data mining (MLDM) prob-

lems like recommendation, topic modeling and medi-

cal diagnosis can be modeled as computing on bipartite

graphs. However, most distributed graph-parallel sys-

tems are oblivious to the unique characteristics in such

graphs and existing online graph partitioning algorithms

usually causes excessive replication of vertices as well

as significant pressure on network communication. This

article identifies the challenges and opportunities of par-

titioning bipartite graphs for distributed MLDM process-

ing and proposes BiGraph, a set of bipartite-oriented

graph partitioning algorithms. BiGraph leverages obser-

vations such as the skewed distribution of vertices, dis-

criminated computation load and imbalanced data sizes

between the two subsets of vertices to derive a set of op-

timal graph partition algorithms that result in minimal

vertex replication and network communication. BiGraph

has been implemented on PowerGraph and is shown to

have a performance boost up to 17.75X (from 1.38X) for

four typical MLDM algorithms, due to reducing up to

62% vertex replication, and up to 96% network traffic.

1 Introduction

As the concept of “Big Data” gains more and more mo-

mentum, running many MLDM problems in a cluster of

machines has been a norm. This also stimulates a new

research area called Big Learning, which uses leverage

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
APSys ’14, June 25-26, 2014, Beijing, China
Copyright 2014 ACM 978-1-4503-3024-4/14/06 ...$15.00.

a set of networked machines for parallel and distributed

processing of more complex algorithms and larger prob-

lem sizes. This, however, creates new challenges to ef-

ficiently partition a set of input data across multiple ma-

chines to balance load and reduce network traffic.

Currently, many MLDM problems concern large

graphs such as social and web graphs. These problems

are usually coded as vertex-centric programs by follow-

ing the “think as a vertex” philosophy, where vertices

are processed in parallel and communicate with their

edges through their edges. For distributed processing of

such graph-structured programs, graph partitioning plays

a central role to distribute vertices and their edges across

multiple machines, as well as to create replicated vertices

and/or edges to form a locally consistent graph states in

each machine.

Though graphs can be arbitrarily formed, real-world

graphs usually have some specific properties to reflect

their application domains. Among them, many MLDM

algorithms model their input graphs as bipartite graphs,

whose vertices can be separated as two disjoint sets

U and V and every edge connects a vertex in U and

V. Example bipartite graphs include the customers/-

goods graph in recommendation systems, topics/docu-

ments graph in topic modeling algorithms. Due to the

wide existence and importance of bipartite graphs, there

have been a number of popular MLDM algorithms that

operate on such graphs, including Singular Value De-

composition (SVD), Alternating Least Squares (ALS),

Stochastic Gradient Descent (SGD), Belief Propagation

(BP) and Latent Dirichlet Allocation (LDA), with the

application domains ranging from recommendation sys-

tems to medical diagnosis and text analysis.

Despite the popularity of bipartite graph, there is lit-

tle study on how to efficient partition bipartite graphs

in large-scale graph computation systems. Most exist-

ing systems simply apply general graph partitioning al-

gorithms that are oblivious to the unique features of bi-

partite graphs. This results in suboptimal graph partition

barriar

gather(Dv,D(v,n),Dn):
return Dn.rank/#outNbrs(v)

acc(a, b): return a + b

apply(Dv, acc):
rank = 0.15 + 0.85*acc

Dv.delta = Dv.rank rank
Dv.rank = rank

scatter(Dv,D(v,n),Dn):
if (|Dv.delta| > ε)
activate(n)

35

4

2

1 6

Pagerank mirror

master

local graph

Fig. 1: Pseudo-code of PageRank algorithm using GAS model, and execution flow of graph-parallel system for a sample graph.

with significant replicas of vertices and/or edges, lead-

ing to not only redundant computation, but also exces-

sive network communication to synchronize graph states.

Though there are some graph partition algorithms for bi-

partite graphs, none of them satisfies the requirement of

large-scale graph computation. Many of them [5, 15] are

offline partitioning algorithms that require fully informa-

tion of graphs, and thus are very time-consuming and not

scalable to large graph dataset. Some others [7, 6] only

work on a special type of graphs or algorithms, making

them hard to be generalized to a wide range of MLDM

problems.

In this paper, we make a systematic study on the char-

acteristics of real-world bipartite graphs and the related

MLDM algorithms, and describe why existing online

distributed graph partitioning algorithms fail to produce

an optimal graph partition for bipartite graphs. Based

on the study, we argue that the unique properties of bi-

partite graphs and special requirement of bipartite algo-

rithms demand differentiated partitioning [3] of the two

disjoint sets of vertices. Based on our analysis, we in-

troduce BiGraph, a set of distributed graph partition al-

gorithms designed for bipartite applications. The key of

BiGraph is to partition graphs in a differentiated way and

loading data according to the data affinity.

We have implemented BiGraph1 as separate graph par-

tition modules of GraphLab [12, 8], a state-of-the-art

graph-parallel framework. Our experiment using three

MLDM algorithms on an in-house 6-machine multicore

cluster with 144 CPU cores shows that BiGraph reduces

up to 62% vertex replication, and saves up to 96% net-

work traffic. This transforms to a speedup up to 17.75X

(from 1.38X) compared to the state-of-the-art Grid [9]

partitioning algorithm (the default partitioning algorithm

in GraphLab).

1The source code and a brief instruction of how to use Bi-

Graph are at http://ipads.se.sjtu.edu.cn/projects/

powerlyra.html

2 Graph-parallel Systems and

Partition Algorithms

2.1 Graph-parallel Systems

Many distributed graph-parallel systems, including

Pregel [13] and GraphLab [12, 8], follow the ‘think

as a vertex’ philosophy and abstract a graph algorithm

as a vertex-centric program P , The program is exe-

cuted in parallel on each vertex v ∈ V in a sparse graph

G = {V,E,D}. The scope of computation and commu-

nication in each P(v) is restricted to neighboring vertices

through edges where (s, t) ∈ E. Programmers can also

associate arbitrary data Dv and Ds,t to vertex v ∈ V , and

edge (s, t) ∈ E respectively.

As shown in Figure 1, the right part illustrates the

overall execution flow for the sample graph on Power-

Graph, the latest version of the GraphLab framework2.

To exploit distributed computing resources of a cluster,

the runtime splits an input graph into multiple partitions

and iteratively executes user-defined programs on each

vertex in parallel.

First, the runtime loads graph topology and data files

from a secondary storage (e.g., HDFS or NFS), and dis-

tributes vertices and edges to target machines accord-

ing to a graph partition algorithm. Then, replicas for

vertices are created for each edges spanning machines

to finalize in-memory local graphs such that each ma-

chine has a locally-consistent sub-graph . PowerGraph

adopts the GAS (Gather, Apply, Scatter) model to ab-

stract graph algorithms and employs a loop to express

iterative computation in many MLDM algorithms. The

pseudo-code in Figure 1 illustrates an example imple-

mentation of the PageRank [2] algorithm implemented

by the GAS model. In the Gather phase, the gather

and accum functions accumulate the rank of neighboring

vertices through in-edges; and then the apply function

2GraphLab after version 2.1 runs the PowerGraph engine

2

calculates and updates a new rank to vertex using accu-

mulated values in the Apply phase; finally the scatter

function sends messages and activates neighboring ver-

tices through out-edges in the Scatter phase.

2.2 Distributed Graph Partitioning

A key to efficient Big Learning on graph-parallel systems

is optimally placing graph-structured data including ver-

tices and edges across multiple machines. As graph com-

putation highly relies on the distributed graph structures

to store graph computation states and encode interactions

among vertices, an optimal graph partitioning algorithm

can minimize communication cost and ensure load bal-

ance of vertex computation.

There are two main types of approaches: offline and

online (streaming) graph partitioning. Offline graph par-

titioning algorithms (e.g., Metis and spectral clustering)

require full graph information has been known by all

workers (e.g. machines), which requires frequent co-

ordination among workers in a distributed environment.

Though it may produce a distributed graph with optimal

graph placement, it causes not only significant resources

consumption, but also lengthy execution time even for

a small-scale graph. Consequently, offline partitions are

rarely adopted by large-scale graph-parallel systems for

Big Learning. In contrast, online graph partitioning aims

at to find a near-optimal graph placement by distributing

vertices and edges with only limited graphs information.

Due to the significant less partitioning time yet still-good

graph placement, it has been widely adopted by almost

all large-scale graph-parallel systems.

There are usually two approaches in online graph

partitioning: edge-cut, which divides a graph by cut-

ting cross-partition edges among sub-graphs; and vertex-

cut, which partitions cross-partition vertices among sub-

graphs. General speaking, vertex-cut can evenly dis-

tributing vertices among multiple partitions, but may re-

sult in imbalanced computation and communication as

well as high replication factor for skewed graphs. In con-

trast, vertex-cut can evenly distributing edges, but may

incur high communication cost among partitioned ver-

tices.

PowerGraph employs several vertex-cut algorithms [8,

9] to provide edge balanced partitions, because the work-

load of graph algorithms mainly lies to the number of

edges. Figure 2 illustrates the hash-based (random)

vertex-cut to evenly assign edges to machines, which has

a high replication factor (i.e., λ = #replicas/#vertices)

but very simple implementation; and currently the

default graph partitioning algorithm in PowerGraph,

Grid [9] vertex-cut, which uses a grid-based heuristic to

reduce replication factor by constraining the location of

edges. In this case, random partitioning simply assigns

part1 part2 part3 part4

mirrormaster

favorite

vertex

Fig. 2: A comparison of various partitioning algorithms on a

bipartite graph.

edges by hashing the sum of source and target vertex-ids,

while grid vertex-cut further specify the location to only

an intersection of shards of the source and target vertices.

For example, in random vertex-cut, the edge (1,8) is as-

signed to partition 1 as the sum of 1 and 8 divided by

4 (the total partition number) is 1. In Grid vertex-cut,

the edge (1,8) is randomly assigned by Grid to one of

the intersected partitions (2 and 3) according to the parti-

tioning grid (the left bottom corner of Figure 2). This is

because vertex 1 is hashed to part 1, which constrains the

shards of vertex 1 to row 1 and column 1, while vertex 8

is hashed to part 4, which constrains the shards of vertex

8 to row 2 and column 2. Thus, the resulting shards of the

intersection are 2 and 3. Unfortunately, both partitioning

algorithms result in suboptimal graph placement and the

replication factor is high (2 and 1.83 accordingly), due to

no awareness of the unique features in bipartite graphs.

Our prior work, PowerLyra [3], also uses differenti-

ated graph partitioning for skewed graphs. However,

it does not consider the special properties of bipartite

graphs as well as access locality.

3 Challenges and Opportunities

All vertices in a bipartite graph can be partitioned into

two disjoint subsets U and V, and each edge connects a

vertex from U to one from V, as shown in the left part

of Figure 2. Such special properties of bipartite graphs

and the special requirement of MLDM algorithms im-

pede existing graph partitions to obtain a proper graph

cut and performance. Here, we describe several observa-

tions from real-world bipartite graphs and the character-

istics of MLDM algorithms.

3

First, real-world bipartite graphs for MLDM are usu-

ally imbalanced. This means that the size of two sub-

sets in bipartite graph is significantly skewed, even in the

scale of several orders of magnitude. For example, there

is only ten thousands of terms in Wikipedia, while the

number of articles has exceeded four millions. The num-

ber of grades from students may be dozen times to the

number of courses. As an concrete example, the SLS [4]

dataset, a 10 years of grade point scores at a large State

University, has 62,729 objects (e.g., students, instructors

and departments) and 1,748,122 scores (ratio: 27.87).

This implies that a graph partitioning algorithm needs to

employ differentiated mechanisms on vertices from dif-

ferent subsets.

Second, the computation load of many MLDM algo-

rithms for bipartite graphs may also be skewed among

vertices from the two subsets. For example, Stochastic

Gradient Descent (SGD) [10], a collaborative filtering

algorithm for recommendation systems, only calculates

new cumulative sums of gradient updates for user ver-

tices in each iteration, but none for item vertices. There-

fore, an ideal graph partitioning algorithm should be able

to discriminate the computation to one set of vertices and

exploit the locality of computation by avoiding an exces-

sive replication of vertices.

Finally, the size of data associated with vertices from

the two subsets can be significantly skewed. For ex-

ample, to use probabilistic inference on large astro-

nomical images, the data of an observation vertex can

reach several terabytes, while the latent stellar vertex

has only very few data. If a graph partitioning algo-

rithm distributes these vertices to random machines with-

out awareness of data location, it may lead to excessive

network traffic and significant delay in graph partition-

ing time. Further, the replication of these vertices and

the synchronization among them may also cause signifi-

cant memory and network pressure during computation.

Consequently, it is critical for a graph partitioning algo-

rithm to be built with data affinity support.

4 Bipartite-oriented Graph Partitioning

The unique features of real-world bipartite graphs and

the associated MLDM algorithms demand a bipartite-

aware online graph partitioning algorithm. BiCut is a

new heuristic algorithm to partition bipartite graphs, by

leveraging our observations. Based on the algorithm, we

describe a refinement to further reduce replications and

improve load balance, and show how BiCut supports data

affinity for bipartite graphs with skewed data distribution

to reduce network traffic.

4.1 Randomized Bipartite-cut

Existing distributed graph partitioning algorithms use

the same strategy to distribute all vertices of a bipartite

graph, which cannot fully take advantage of the graph

structures in bipartite graphs, especially for skewed

graphs.

In bipartite graph, two vertices connected by an edge

must be from different disjointed subsets. This im-

plies that arbitrarily partitioning vertices belonging to

the same subset may not introduce any replicas of ver-

tices, as there is no edge connecting them. Based on

above observation, the new bipartite-cut algorithm ap-

plies a differentiated partitioning strategy to avoid repli-

cation for vertices in one favorite subset and provide fully

local access to adjacent edges. First, the vertices in this

set are first-class citizens during partitioning, which are

evenly assigned to machines with all adjacent edges at

first. Such vertices contain no replicas. Then, the repli-

cas of vertices in the other subset are created to construct

a local graph on each machine. One replica of the ver-

tex is randomly nominated as the master vertex, which

coordinates the execution of all remaining replicas.

As shown in Figure 2, since the favorite subset is V,

whose vertices (from 5 to 12) with all edges are evenly

assigned to four partitions without replication. The ver-

tices in subset U (from 1 to 4) are replicated on demand

in each partition. All edges of vertices in the favorite set

can be accessed locally. By contrast, the vertex in the

subset U has to rely on its mirrors for accessing its edges

(e.g., vertex 1). Hence, BiCut only results in a replication

factor of 1.5.

By default, BiCut will use the subset with more ver-

tices as the favorite subset to reduce the replication fac-

tor. However, if the computation on one subset is ex-

tremely sensitive to locality, this subset can also be des-

ignated as the favorite subset to avoid network traffic in

computation, since the edges are always from one subset

to the other. As there is no extra step with high cost, the

performance of BiCut should be comparable to random

vertex-cut.

4.2 Greedy Bipartite-cut

Our experiences show that the workload of graph-

parallel system highly depends on the balance of edges.

Unfortunately, randomized bipartite-cut only naturally

provides the balance of favorite vertices. To remedy

this issue, we propose a new greedy heuristic algorithm,

namely Aweto, inspired by Ginger [3], a greedy heuristic

hybrid-cut for natural graphs.

Aweto uses an additional round of edge exchange to

exploit the similarity of neighbors between vertices in the

favorite subset and the balance of edges in partitions. Af-

4

0110 1010 1100

0110

1010

1100

4

.

1

1

.

1

1110

0010

1001

7

.

2

2

.

2

0001

1111

0011

8

.

3

3

.

3

1110 0010 1001

0001 1111 0011

M-id

V-id

local graph

Fig. 3: The execution flow of bipartite-cut with data affinity.

ter the random assignment of the first round, each worker

greedily re-assigns a favorite vertex v with all edges

to partition i such that δg(v,Si) ≥ δg(v,S j), f or all j ∈
{1,2, . . . , p}, where Si is the current vertex set on par-

tition ∈ P = (S1,S2, . . . ,Sp). Here, δg(v,Si) = |N(v)∩
Si| − B(|Si|), where N(v) denotes the set of neighbors

of vertex v, |Si| denotes the current number of edges on

partition i and B(x) = |Si|
1
2 . B(x) is used to balance the

edges re-assigned from current partition.

Because each partition maintains its own current ver-

tex set Si, the greedy-heuristic algorithm can indepen-

dently execute on all machines without any communica-

tion. Further, the balance of edges re-assigned by each

partition implies a global edge balance of partitions.

4.3 Data Affinity

A large number of graph data may be stored on each

machine of a cluster. For example, the output files of

a MapReduce job will not be merged and stored to the

local secondary storage. The modern distributed filesys-

tem (e.g., HDFS) also split files into multiple blocks and

stored on multiple machines to improve availability and

fault tolerance. Without data affinity, existing data parti-

tion only consider affinity within graph to reduce repli-

cation, which results in a large amount of data movement

from the secondary storage of one machine to the main

memory of other machines.

To reduce movement of a huge amount of data and

avoid replication of favorite vertices, bipartite-cut is fur-

ther extended to support data affinity. The favorite ver-

tices with a huge amount of data is fixedly placed on ma-

chines holding their vertex data, and its edges are also re-

assigned to those machines. In this way, the computation

on favorite vertex is restricted to local machine without

network traffic.

Figure 3 illustrates the execution flow of BiCut with

data affinity. First, all topology information and data of

graph are loaded from local secondary storage to mem-

ory, and a local mapping table (MT) from favorite ver-

tices to the current machine is generated on each ma-

Table 1: A collection of bipartite graphs. The symbol of

(G|B|A) corresponds with Grid, BiCut and Aweto.

Graphs |U | |V | |E| |U |/|V | Rep-Factor (G|B|A)

LJ 4,489K 4,308K 69.0M 1.04 3.07 | 2.48 | 2.26

AS 1,696K 967K 11.1M 1.75 2.80 | 1.82 | 1.57

WG 739K 715K 5.1M 1.03 2.85 | 2.05 | 1.60

RUCCI 1,978K 110K 7.8M 18.00 3.10 | 1.26 | 1.26

SLS 1,748K 63K 6.8M 27.87 3.03 | 1.17 | 1.15

ESOC 327K 38K 6.0M 8.65 3.98 | 1.48 | 1.31

Netflix 480K 17K 100M 27.02 3.97 | 1.18 | 1.18

chine. Then the local mapping table on each machine is

broadcasted to other machines to create a global map-

ping table on each machine. The edge distribution origi-

nally in graph loading is delayed to the end of exchang-

ing mapping tables. Finally, the local graph is con-

structed as before by replicating vertices.

5 Performance Benefit of BiGraph

We have implemented BiGraph based on GraphLab 2.2

(release in July 2013), which runs the PowerGraph en-

gine. BiCut and Aweto are implemented as separate

graph-cut modules for GraphLab.

We evaluate BiGraph against the default graph parti-

tion, Grid [9], on GraphLab framework using three typ-

ical bipartite graph algorithms: Singular Value Decom-

position (SVD), Alternating Least Squares (ALS) and

Stochastic Gradient Descent (SGD).

5.1 Experimental Setup

All experiments were performed on an in-house 6-

machine multicore cluster with a total of 144 CPU cores.

Each machine has a 24-core AMD Opteron 6168 CPU,

64GB RAM, 2x1TB Hard Drivers and 1 GigE network

ports. GraphLab runs 24 threads on each machine. We

run NFS on the same cluster as the underlying storage

layer.

Table 1 lists a collection of bipartite graphs used in

our experiments. They are from Stanford Large Network

Dataset Collection [14] and The University of Florida

Sparse Matrix Collection [4]. The former three bipartite

graph is balanced, the ratios of |U |/|V | are from 1.03 to

1.75. These can be regarded as worst cases for bipartite-

cut due to their balanced distribution. On the contrary,

the latter three bipartite graph is relative skewed, |U |/|V |
are from 8.65 to 27.87. These are more suitable for

bipartite-cut. The last Netflix prize dataset [1] is used as

a building block to simulate large datasets with various

sizes for the weak scalability experiment (section 5.4).

All vertices in the subset |U | and edges are duplicated to

scale the dataset [11].

5

 0

 2

 4

 6

 8
N

o
rm

a
liz

e
d

 S
p

e
e

d
u

p

LJ AS WG RUC SLS ESO RUC SLS ESO

SVD ALS SGD

1
5

.7
1

7
.8

9
.2

1
0

.1

Grid

BiCut

Aweto

Fig. 4: Normalized speedup over Grid on computation perfor-

mance.

 0

 1

 2

 3

 4

N
o

rm
a

liz
e

d
 S

p
e

e
d

u
p

LJ AS WG RUC SLS ESO RUC SLS ESO

SVD ALS SGD

Grid

BiCut

Aweto

Fig. 5: Normalized speedup over Grid on partitioning perfor-

mance.

5.2 Overall Performance

Figure 4 summarizes the normalized speedup of BiCut

and Aweto compared to Grid graph partitioning on the

computation phase with different algorithms and graphs.

Since all partitioning algorithms use the same execu-

tion engine in computation phase, the speedup highly

depends on the reduction of replication factors, which

dominates the communication cost. For skewed bipartite

graphs, BiCut can remarkably decrease replication factor

by avoiding replication for all vertices in the favorite sub-

set (e.g., U). BiCut reduces 59%, 61% and 63% replicas

for the RUCCI, SLS and ESOC graphs. BiCut outper-

forms Grid partitioning by up to 15.65X (from 5.28X)

and 3.73X (from 2.33X) for ALS and SGD accordingly.

For balanced bipartite graphs, BiCut still moderately re-

duces the replication factor, and provides a speedup by

1.24X, 1.33X and 1.17X for LJ, AS and WG graphs on

SVD. Aweto can further reduce replication factor and

provides up to 38% additional improvement.

Figure 5 illustrates the graph partition performance of

BiCut and Aweto against Grid, including loading and fi-

nalizing time. BiCut outperforms Grid by up to 2.63X

(from 1.07X) due to lower replication factor, which re-

duces the cost for data movement and replication con-

struction. Aweto is lightly slower than BiCut because of

additional edge exchange.

0%

20%

40%

60%

80%

100%

N
o

rm
a

liz
e

d
 N

e
tw

o
rk

 T
ra

ff
ic

LJ AS WG RUC SLS ESO RUC SLS ESO

SVD ALS SGD

Grid BiCut Aweto

Fig. 6: Percent of network traffic reduction over Grid.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 0.5 1 1.5 2 2.5 3 3.5

E
x
e

c
u

ti
o

n
 T

im
e

 (
S

e
c
)

Number of Edges (Billions)

Grid

BiCut

Fig. 7: A comparison between Grid and BiCut with the increas-

ing graph size.

5.3 Reduced Network Traffic

Since the major source of speedup is from reducing net-

work traffic in the partitioning and computation phases,

we compare the total network traffic of BiCut and Aweto

against Grid. As shown in Figure 6, the percent of net-

work traffic reduction can perfectly match the perfor-

mance improvement. BiCut and Aweto can reduce up

to 96% (from 78%) and 45% (from 22%) network traf-

fic against Grid for skewed and balanced bipartite graphs

accordingly.

5.4 Weak Scalability

Figure 7 shows that BiCut has better weak scalability

than Grid, and keeps the improvement with increasing

graph size. For the increase of graph size from 100 to 800

million edges, BiCut outperforms Grid partitioning by up

to 2.21X (from 1.46X). Note that using Grid partitioning

even cannot scale past 800 million edges on a 6-machine

cluster with 144 CPU cores and 384GB memory due to

exhausting memory. While using BiCut partitioning can

scale well with even more than 3.2 billion edges.

6

5.5 Benefit of Data Affinity Support

To demonstrate the effectiveness of data affinity exten-

sion, we use an algorithm to calculate the occurrences of

a user-defined keyword touched by Users on a collection

of Webpages at fixed intervals. The application models

users and webpages as two subsets of vertices, and the

access operations as the edges from users to webpages.

In our experiment, the input graph has 4,000 users and

84,000 webpages, and the vertex data of user and web-

page are the occurrences of the keywords (4 bytes inte-

ger) and the content of a page (a few ten to several hun-

dreds of kilobytes) accordingly. All webpages are from

Wikipedia (about 4.82GB) and separately stored on the

local disk of each machine of cluster.

For this graph, Grid partitioning results in a replica-

tion factor of 3.55 and causes about 4.23GB network

traffic due to a large number of data movement for web-

page vertices, while BiCut has only a replication factor

of 1.23 and only causes 1.43MB network traffic only

from exchanging mapping table and dispatching of user

vertices. This transforms to a performance speedup of

8.35X (6.7s vs. 55.7s) over Grid partitioning. It should

be note that, without data affinity support, the graph com-

putation phase may also result in a large number of data

movement if the vertex data is modified.

6 Conclusion and Future Work

In this paper, we have identified the main issues with ex-

isting graph partitioning algorithms in large-scale graph

analytics framework for bipartite graphs and the related

MLDM algorithms. A new set of graph partitioning al-

gorithms, called BiGraph, leveraged three key observa-

tions from bipartite graph. BiCut employs a differenti-

ated partitioning strategy to minimize replication of ver-

tices, and also exploited locality for all vertices from the

favorite subset of a bipartite graphs. Based on BiCut, a

new greedy heuristic algorithm, called Aweto, was pro-

vided to optimize partition by exploiting the similarity of

neighbors and load balance. In addition, based on the ob-

servation of skewed distribution of data size between two

subsets, BiGraph was further refined with the support of

data affinity to minimize network traffic. Our evaluation

showed that BiGraph is effective in not only significantly

reducing network traffic and but also resulting in a no-

table performance boost of graph processing.

7 Acknowledgments

We thank the anonymous reviewers for their insight-

ful comments. This work is supported in part Doc-

toral Fund of Ministry of Education of China (Grant No.
20130073120040), the Program for New Century Excel-

lent Talents in University of Ministry of Education of

China, Shanghai Science and Technology Development

Funds (No. 12QA1401700), a foundation for the Au-

thor of National Excellent Doctoral Dissertation of PR

China, China National Natural Science Foundation (No.

61003002) and Singapore NRF (CREATE E2S2).

References

[1] Netflix prize. http://www.netflixprize.com/.

[2] BRIN, S., AND PAGE, L. The anatomy of a large-scale hypertex-

tual web search engine. In WWW (1998), pp. 107–117.

[3] CHEN, R., SHI, J., CHEN, Y., GUAN, H., ZANG,

B., AND CHEN, H. Powerlyra: Differentiated

graph computation and partitioning on skewed graphs.

http://ipads.se.sjtu.edu.cn/projects/powerlyra/PowerLyra-

IPADSTR-2013-001.pdf, 2013.

[4] DAVIS, T., AND HU, Y. The uni-

versity of florida sparse matrix collection.

http://www.cise.ufl.edu/research/sparse/matrices/index.html.

[5] DHILLON, I. S. Co-clustering documents and words using bi-

partite spectral graph partitioning. In Proceedings of the seventh

ACM SIGKDD international conference on Knowledge discovery

and data mining (2001), ACM, pp. 269–274.

[6] GAO, B., LIU, T.-Y., FENG, G., QIN, T., CHENG, Q.-S., AND

MA, W.-Y. Hierarchical taxonomy preparation for text catego-

rization using consistent bipartite spectral graph copartitioning.

Knowledge and Data Engineering, IEEE Transactions on 17, 9

(2005), 1263–1273.

[7] GAO, B., LIU, T.-Y., ZHENG, X., CHENG, Q.-S., AND

MA, W.-Y. Consistent bipartite graph co-partitioning for star-

structured high-order heterogeneous data co-clustering. In Pro-

ceedings of the eleventh ACM SIGKDD international conference

on Knowledge discovery in data mining (2005), ACM, pp. 41–50.

[8] GONZALEZ, J., LOW, Y., GU, H., BICKSON, D., AND

GUESTRIN, C. PowerGraph: Distributed graph-parallel compu-

tation on natural graphs. In OSDI (2012).

[9] JAIN, N., LIAO, G., AND WILLKE, T. L. Graphbuilder: scal-

able graph etl framework. In First International Workshop on

Graph Data Management Experiences and Systems (New York,

NY, USA, 2013), GRADES ’13, ACM, pp. 4:1–4:6.

[10] KOREN, Y., BELL, R., AND VOLINSKY, C. Matrix factorization

techniques for recommender systems. Computer 42, 8 (2009),

30–37.

[11] KUMAR, A., BEUTEL, A., HO, Q., AND XING, E. P. Fugue:

Slow-worker-agnostic distributed learning for big models on big

data. In Proceedings of the Seventeenth International Conference

on Artificial Intelligence and Statistics (2014), pp. 531–539.

[12] LOW, Y., BICKSON, D., GONZALEZ, J., GUESTRIN, C., KY-

ROLA, A., AND HELLERSTEIN, J. M. Distributed GraphLab:

a framework for machine learning and data mining in the cloud.

VLDB Endow. 5, 8 (2012), 716–727.

[13] MALEWICZ, G., AUSTERN, M. H., BIK, A. J., DEHNERT,

J. C., HORN, I., LEISER, N., AND CZAJKOWSKI, G. Pregel:

a system for large-scale graph processing. In SIGMOD (2010),

pp. 135–146.

[14] PROJECT, S. N. A. Stanford large network dataset collection.

http://snap.stanford.edu/data/.

[15] ZHA, H., HE, X., DING, C., SIMON, H., AND GU, M. Bi-

partite graph partitioning and data clustering. In Proceedings of

the tenth international conference on Information and knowledge

management (2001), ACM, pp. 25–32.

7

