Boosting Inter-Process Communication with Architectural
Support’

YUBIN XIA, DONG DU, ZHICHAO HUA, BINYU ZANG, HAIBO CHEN, HAIBING GUAN,
Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai Jiao Tong University, China,
Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University, China, and

Shanghai AI Laboratory, China

IPC (inter-process communication) is a critical mechanism for modern OSes, including not only microkernels
like seL4, QNX and Fuchsia where system functionalities are deployed in user-level processes, but also
monolithic kernels like Android where apps frequently communicate with plenty of user-level services.
However, existing IPC mechanisms still suffer from long latency. Previous software optimizations of IPC
usually cannot bypass the kernel which is responsible for domain switching and message copying/remapping
across different address spaces; hardware solutions like tagged memory or capability replace page tables
for isolation, but usually require non-trivial modification to existing software stack to adapt to the new
hardware primitives. In this paper, we propose a hardware-assisted OS primitive, XPC (Cross Process Call),
for efficient and secure synchronous IPC. XPC enables direct switch between IPC caller and callee without
trapping into the kernel, and supports secure message passing across multiple processes without copying.
We have implemented a prototype of XPC based on the ARM AArch64 with Gem5 simulator and RISC-V
architecture with FPGA boards. The evaluation shows that XPC can reduce IPC call latency from 664 to
21 cycles, 14x-123x improvement on Android Binder (ARM), and improve the performance of real-world
applications on microkernels by 1.6x on Sqlite3.

CCS Concepts: « Computer systems organization — Architectures; « Software and its engineering —
Operating systems.

Additional Key Words and Phrases: operating system, microkernel, inter-process communication, hardware-
software co-design

ACM Reference Format:

Yubin Xia, Dong Du, Zhichao Hua, Binyu Zang, Haibo Chen, Haibing Guan. 2022. Boosting Inter-Process
Communication with Architectural Support. 7. ACM 37, 4, Article 111 (October 2022), 35 pages. https://doi.
org/10.1145/1122445.1122456

“This article extends a prior conference version that appeared in the proceedings of the 46th ACM/IEEE International
Symposium on Computer Architecture (ISCA’19) by proposing new designs to support the XPC hardware extensions in
ARM architectures, implementing the system on Gem5 and Linux, and evaluating new test cases.

Author’s address: Yubin Xia, Dong Du, Zhichao Hua, Binyu Zang, Haibo Chen, Haibing Guan,

Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai Jiao Tong University, Shanghai, China ,
Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University, Shanghai, China ,

Shanghai AI Laboratory, Shanghai, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

0004-5411/2022/10-ART111 $15.00

https://doi.org/10.1145/1122445.1122456

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2022.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

111:2 Yubin Xia et al.

1 INTRODUCTION

IPC (Inter-Process Communication) is a critical mechanism of operating system, which enables
processes to send/receive messages to each other for data sharing, service invocation, etc. IPC is
essential for microkernels [30, 40, 54] , which move most of the functionalities from privileged-
mode to isolated user-mode domains that cooperate with each other through IPC. IPC is also
important for monolithic systems with many user-level services, like Binder in Android [10]. For
example, Android deploys multiple system services as user-level processes. Applications frequently
communicate with these services through IPC, e.g., for drawing a component on the surface through
a window manager. The efficiency of IPC directly affect the performance of applications as well as
user experiences.

Unfortunately, existing IPC mechanisms still cause long latency, in either microkernels or
monolithic kernels. For example, on Intel SkyLake processor, seL4 microkernel [34] spends about
468 cycles [6] for a one-way IPC on its fast path! (687 cycles when enabling Spectre/Meltdown
mitigations). For Google Fuchsia’s microkernel (called Zircon) [2] and Linux, one IPC may take
tens of thousands of cycles.

Most of the cycles of an IPC are spent on two tasks: 1) domain switching, and 2) message copying.
Domain switching is usually done by the kernel, which includes context saving/restoring, capability
checking, and other IPC-related logics.

One way to reduce the cost of message copying is to pass the message through shared memory.
However, such a method may lead to TOCTTOU (Time-Of-Check-To-Time-Of-Use) attack, i.e., the
callee may check the state of a resource before using it, but the state can be changed by a malicious
caller between the check and the use that violates the results of checking [11]. TOCTTOU can
cause the victim callee to perform invalid actions because of the unexpected state [44]. Adopting
page remapping for ownership transfer can mitigate the above security problem, but the remapping
operation further increases latency and may also lead to costly TLB shootdown due to page table
modification.

Previous work proposed various ways to optimize IPC performance, by either software [21,
31, 32, 39] or hardware [37, 38, 46, 51, 56, 59, 60]. For most software solutions, the overhead of
trapping to kernel is inevitable, and message passing will lead to either multiple data copying or TLB
shootdown. Some hardware solutions, like CODOMs [55], leverage tagged memory instead of page
tables for isolation. They adopt single address space to reduce the overhead of domain switching
and message passing. These new hardware solutions usually require non-trivial modifications of
existing kernel implementations which are designed for hosting multiple address spaces.

In this paper, we propose a new hardware-assisted OS primitive, XPC (cross Process Call), to
securely improve the performance of IPC. The design has four goals:

(1) Direct switching without trapping to kernel.
(2) Secure zero-copying for message passing.
(3) Easy integration with existing kernels.

(4) Minimal hardware modifications.

Specifically, our new primitive contains three parts. The first is a new hardware-assisted IPC
abstraction, x-entry, which is similar to endpoint in traditional microkernel but with additional
states. Each x-entry has its own ID and uses a new capability, xcall-cap, for access control. The
capability is managed by the kernel for flexibility and checked by the hardware for efficiency. The
second is a set of new instructions including xcall and xret that allows user-level code to directly
switch across processes without the kernel involved. The third is a new address-space mapping

IFast path in seL4 is a heavily-optimized IPC routine without scheduling and does not consider long message copying.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2022.

Boosting Inter-Process Communication with Architectural Support 111:3

mechanism, named relay-seg (short for “relay memory segment”), for zero-copying message passing
between callers and callees. The mapping is done by a new register which specifies the base and
range of virtual and physical addresses of a message. This mechanism supports memory ownership
transfer by ensuring only one owner of the message at any time, which can prevent the TOCTTOU
attack and requires no additional TLB flush. If process A invokes B (through IPC), and B invokes C,
we call it an invokcing chain. A relay-seg can also be passed through an invoking chain to further
reduce the time of memory copying.

XPC chooses to keep the semantic of synchronous IPC. XPC overcomes two limitations of
traditional synchronous IPC [29], one is the relatively low data transfer throughput and the other is
its not-easy-to-use model for multi-threaded applications. XPC improves throughput with the relay-
seg mechanism, and provides easy-to-use programming interfaces with the migrating thread [31]
and thread pool model. Besides, we only focus on intra-host IPC in this paper. Cross-host IPC (aka.,
Remote Procedure Call, RPC) is not considered in this paper.

We have implemented a prototype of XPC based on Gem5 simulator (a hardware simulator
encompassing system-level architecture and processor microarchitecture) [23] and Rocket RISC-V
core on FPGA board for evaluation. We ported two microkernel implementations (seL4 and Zircon)
and one monolithic kernel implementation (Linux with Android Binder [10]), then measured the
performance of both micro-benchmarks and real-world applications. The results show that XPC
can reduce the latency of IPC by 5x-141x for existing microkernels, 14x—-123x improvement on
Android Binder (ARM), and the performance of applications like SQLite can be improved by up to
12x (from 1.6x). The overall hardware costs are small (1.99% in FPGA LUT resource).

The main contributions of this paper are as follows:

o A detailed analysis of performance overhead of IPC and a comparison with existing optimiza-
tions.

e A new IPC primitive with no kernel-trapping and zero-copying message support along the
calling chain.

e An implementation of XPC on FPGA as well as Gemb5, integrated with two microkernels and
Android Binder IPC.

e An evaluation with both microbenchmarks and real workloads on real platforms.

2 MOTIVATION

The semantic of a synchronous IPC is like a cross process function call: the caller thread blocks
until the callee thread returns. The steps during a synchronous IPC can be grouped into two
tasks: domain switch and data transfer. Typically, a domain switch requires trapping to the
kernel which includes mode switch, context switch, states save/restore, and IPC logic (including
scheduling). Data (message) transfer is used for passing arguments and returning values between
the caller and callee. While short messages can be passed through registers, for long messages,
memory copying is the most commonly used method.

We start by analyzing the IPC performance of state-of-the-art OSes (i.e., seL4 [34] and Android)
and then present a detailed explanation of IPC. Our work is motivated by the performance analysis.

2.1 IPC Performance is Still Critical

We took YCSB benchmark workloads and ran Sqlite3 on selL4 on a SiFive U500 RISC-V FPGA
board [14] (more setup in §8). Figure 1(a) shows that Sqlite3 with YCSB’s workloads spends 18%
to 39% of the time on IPC, which is significant. For each IPC, most of the time is spent on two
tasks: domain switch and message transfer. For IPC with short message, the major performance
overhead comes from domain switch; as the length of message increases, the time of data transfer

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2022.

111:4 Yubin Xia et al.

Table 1. One-way IPC latency of seL4. seL4 (4KB) will use shared memory. The evaluation is done on a
RISC-V U500 FPGA board.

seL4(0B) seL4(4KB)

Phases (cycles) fast path fast path

Trap 107 110
IPC Logic 212 216
Process Switch 146 211
Restore 199 257
Message Transfer 0 4010
Sum 664 4804

dominates. Figure 1(b) shows the cumulative distribution of IPC time with different message sizes
on the YCSB-E workload. In total, message transfer takes 58.7% of all the IPC time. The result is
similar for other YCSB workloads, ranging from 45.6% to 66.4%. The rest is mainly spent on domain
switch, which takes another half of the entire IPC time. This motivates us to design XPC with both
fast domain switch and efficient message transfer.

total -
00 - data transfer ——
Qo
E
E 80 g 08
5 =
O
I @ gos
& B
?, wl é 0.4
8
5 R
& 0.2 QAN
N\ NN \\ \\ \\ N\ > 7, / /,
! 0 4 16 64 256 IK 4K 8K
Workloads Message Length(B)
(a) CPU time spent. (b) IPC time on YCSB-E.

Fig. 1. (a): For Sqlite3 with YCSB workload, around 18% to 39% of the time is spent on IPC. (b): Distribution
of IPC time (during YCSB-E test). “total“ means the CDF of the total IPC costs related to different message
sizes. “data transfer” means the ratio of message transfer costs and total IPC costs related to different
message sizes.

2.2 Microkernel IPC Analysis

In this section, we break down the process of IPC in microkernel, measure the cost of each step,
and analyze where the time goes. This quantitative analysis is also done using seL4 microkernel
with U500 board.

There are two paths of IPC in seL4: a “fast path” and a “slow path”. The fast path contains five
steps, as shown in Table 1. The slow path allows scheduling and interrupts, which introduce longer
latency. Next, we will focus on the fast path and explain when sel.4 will take the slow path.

Trap & Restore: A caller starts an IPC by invoking a system call. The kernel then saves the caller’s
context and switches to its own context. After finishing the IPC handling code (e.g., fastpath_call in

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2022.

Boosting Inter-Process Communication with Architectural Support 111:5

seL4), the kernel will restore the callee’s context and return to its userspace. As shown in Table 1,
these two phases take about 300 cycles which is nearly half the time of domain switch.

In existing systems, the kernel will always save and restore all the context during switching for
isolation. The underlying assumption is that the caller and callee do not trust each other. However,
in certain cases, the caller and callee may have different trust assumptions, e.g., when they can
trust each other, they only need to save and restore few registers like the traditional function call
(according to the calling convention). Thus, existing kernel-involved IPC misses the optimization
opportunities.

IPC Logic: In the IPC logic part, the major task is checking the validness of the IPC call. seL4 uses
capabilities to manage all the kernel resources, including IPC. The kernel first fetches the caller’s
capability and checks its validity (e.g., having send permission or not). It then checks if any of the
following conditions are met; if so, the slow path will be taken:

o the caller and callee have different priorities, or

e the caller and callee are not on the same core, or

o the size of a message is larger than registers (32B) and less than 120B (IPC buffer size).

The IPC logic takes about 200 cycles.

We find that it is possible to separate the checking logic to a control plane and a data plane, in
which the former is done by software for more flexibility and the latter by hardware for more
efficiency.

Process Switch: After running the IPC logic, the kernel achieves the “point of no return” and
switches context to the callee. In this part, the kernel manipulates the scheduling queue to dequeue
the callee thread and block the caller. Finally, the kernel transfers the IPC messages (only for
messages < 32B) and switches to the callee’s address space. The process switch phase occupies
about 150-200 cycles.

Message Transfer: In selL4, there are three ways to transfer a message according to its length. If a
message is small enough to be put into registers, it will be copied during the process switch phase,
as mentioned. For medium-size messages (> the space of available registers but < IPC buffer), seL4
will turn to slowpath to copy the message (in our experiment, an IPC with 64B message takes
2182 cycles). For transferring long messages, seL4 uses shared memory in user space to avoid data
copying (e.g., 4010 cycles for copying 4KB data in Table 1).

However, transferring message through shared memory may bring security issues. For example, a
multi-threaded caller can observe the callee’s operations performed on the shared memory, or even
affect the callee’s behavior by modifying the shared memory while the callee is processing. Further,
in most existing implementations, the message still needs to be copied to the shared memory at
first. The message transfer dominates the IPC cycles when the message size is large.

2.3 Monolithic Kernel IPC Analysis

Low IPC latency becomes significant for modern operating systems. However, a single-minded
pursuit of performance-oriented design is insufficient because today’s IPC is feature-rich especially
on monolithic kernel-based OSes. An IPC design should be capable of supporting the necessary
features for better usability.

This section takes Android as an example to analyze the IPC facilities provided by a monolithic
kernel (Linux), which forms the requirements for our design.

Binder IPC: Binder IPC is an extension introduced by Android to Linux for inter-process com-
munication. It has been widely used in Android components, including window manager, activity
manager, input method manager, etc [10]. Binder IPC uses Binder transaction, which is a set of

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2022.

111:6 Yubin Xia et al.

Table 2. Marshaling/Unmarshaling with Binder Parcel. The marshaling and unmarshaling methods for
basic data types (i.e., Integer, Float, and String) are in Binder’s parcel library, e.g., writeFloat and readFloat.
The results are latencies transferring 1,000 objects. The marshaling for the linked list is based on the basic
data types, and the results are transferring one list with 1,000 entries. It is evaluated in gem5 (setting in §8.1),
and the results are represented using ticks.

Integer Float String Linked list

Marshaling (kticks) 34,524 34,958 100,746 44,536
Unmarshaling (kticks) 24,766 29,016 10,766 112,648

protocols and commands to establish an IPC channel, configure IPC, and process IPC operations.
More details will be introduced in §8.5. Binder IPC relies on the kernel to copy the transfer data
from the caller to the callee processes (i.e., two copying). Besides, Android combines Binder with
ashmem (anonymous shared memory [9]), which allows a process to share a memory region with
another process by sharing a file descriptor (i.e., zero-copying), to boost the performance of bulk
memory transfer between processes.

Marshalling: The transferred data is named parcel in Binder IPC. Binder provides a library to
read/write objects with basic data types like integer, float, boolean, or string from/to a parcel.
Binder also allows processes to implement customized data structures, e.g., linked list, which must
implement the Parcelable interface. A data structure implementing the interface must provide
methods to serialize an object on the caller and deserialize it on callee. It is required to break the
high-level structures into basic data types for serialization and deserialization.

The procedure of building a parcel from objects (with different data types) is called marshalling,
and the procedure of rebuilding objects from a parcel is called unmarshalling. To reveal marshalling’s
performance implications, we present an evaluation using Binder’s parcel, as shown in Table 2.
It shows that the costs for different data types, from the basic data types to high-level structures.
The string’s unmarshalling costs are less than others (i.e., Integer, Float and Linked List in Table 2)
because the Binder will directly return a pointer pointing to the string without copying. The
unmarshalling costs for the linked list are much more than marshalling costs because it needs to
re-construct the whole list, including allocating memory. The analysis implies that marshalling
and unmarshalling are costly and should be optimized. In this work, we use a hardware-software
co-design to mitigate the costs of marshalling and unmarshalling (§5.4 and §6.2).

Concurrent Communication: Binder IPC allows multiple clients ? to communicate with the same
server simultaneously. It leverages the thread pool model to achieve the goal. The server process
should register a set of working threads (called Looper) into a thread pool managed by the OS.
The working threads are blocked in the kernel. When a communication request arrives, the kernel
will select an idle working thread, pass messages to it, and wake up the thread so it can handle
the requests. Supporting concurrent communication brings challenges to a hardware-assisted IPC
mechanism. We will elaborate on the challenge, and how XPC (this work) overcomes it in §5.2 and
§6.2.

24 Goals

Based on the analysis, we summarize three goals: first, a fast IPC that does not depend on the
kernel (Goal-1) is necessary but still missing. Second, a secure and zero-copying mechanism for
passing messages while supporting handover (Goal-2) is critical to performance. Third, an IPC

In the paper, we also use “client/server” to represent “caller/callee”.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2022.

Boosting Inter-Process Communication with Architectural Support 111:7

Table 3. Systems with IPC optimizations. A means TLB flush operations. N means the number of IPC in
a calling chain.

Systems Domain switch Message passing
Addr . w/o w/o . w/oTO- Hand Granu- Copy
Type Name Space Description trap sched Description CTTOU over larity time
Baseline | Mach-3.0 Multi | Kernel schedule X X Kernel copy v X Byte 2'N
LRPC [21] Multi | Protected proc call X v/ A-stack copy v/ X Byte 2'N
Software Mach (94) [31] Multi | Migrating thread X 4 Kernel copy 4 X Byte N
opt Tornado [32] Multi | Protected proc call X v Remapping 4 X Page 0+A
L4 [39] Multi | Direct proc switch X 4 Temp orary 4 X Byte N
mapping
CrossOver [38] Multi | Direct EPT switch v v Shared mem. X X Page N-1
SkyBridge [46] Multi | Direct EPT switch v v Shared mem. X X Page N-1
Opal [25] Single| Domain register v v Shared mem. X X Page N-1
CHERI [58] Single| Function call 4 v Memory cap. X v Byte 0
CODOMs [55,56] Single| Function call v 4 Cap e+ X v Byte 0
perm list
. .. DMA-style . N
Hardware DTU [19] Multi | Explicit 4 v data copy 4 X Byte 2N
opt. Mondrian [60] Multi | Call gate X 4 Mapping -+ X X Byte 0+A
grant perm
XPC Muli | Crossprocesscall v/ | RO sE v/ Byte 0

design should support concurrent communication and transfer messages efficiently (Goal-3). Our
design is based on these three goals.

3 RELATED WORK

There is a long line of research on reducing the latency of domain switch as well as long message
transfer for IPC optimization. This section aims to answer the following questions:

e Why software-only approaches cannot achieve the proposed goals, and what are the missing
parts in hardware?

e Why state-of-the-art hardware-assisted approaches can not achieve the goals?

e Why existing hardware “direct switching” mechanisms like VMFUNC and MPK can not
achieve the goals?

We will focus on the first two goals and leave the third one in §5.2. We classify related approaches
into two categories: optimizations on domain switch and optimizations on message passing, as
shown in Table 3.

3.1 Optimizations on Domain Switch

Software-based Optimizations. One widely adopted optimization is to use a caller’s thread to run
callee’s code in callee’s address space, as in PPC (protected procedure call) [21, 32] and migrating
thread model [27, 31]. This optimization eliminates the scheduling latency and mitigates IPC logic
overhead, and has been used in LRPC [21] and the new version of Mach [31]. Tornado [32] also
adopts PPC as its execution model. Besides, it leverages another feature of PPC, “fine data locality”,
to mitigate the data cache miss penalty caused by domain switching. L4 [33, 39, 41, 42] uses a
similar technology called “direct process switch” that supports address space switching between
caller and callee with a small cost in kernel. It also adopts “lazy scheduling” to avoid frequent
run-queue manipulations to reduce cache miss and TLB miss by careful placement.

Limitations of Software-based Optimizations. As shown in Table 3, two key requirements to
achieve Goal-1 for a domain switch are no trapping into the kernel and no scheduling. Although
software-only approaches can mitigate the scheduling costs using a carefully designed IPC routine,

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2022.

111:8 Yubin Xia et al.

they can not achieve the “without trapping” requirement as they still rely on the OS kernel to
perform context switchings from caller to callee.

Barrelfish [20], as a state-of-the-art kernel design based on the multikernel model, utilizes
URPC [22] for cross-core communication. URPC is an asynchronous IPC design and can achieve
both requirements by polling on user-space shared memory. It can achieve significant low latency
even on complicated settings, e.g., only 618 cycles (with two-hop) on an 8x4-core AMD.> However,
URPC brings few benefits if both the caller and callee are on the same core. Besides, it usually
requires communicating entities to poll on well-structured messages (usually using a cache line)
to gain the best performance, which is too restrictive for scenarios without redundant CPU cores,
like mobile devices, cars, etc. Although modern OSes tend to utilize both asynchronous IPC and
synchronous IPC for different scenarios, in this paper, we only focus on optimizing the performance
of synchronous IPC, which usually has a stricter latency requirement.

Hardware-based Optimizations. New hardware extensions are also proposed to improve the
performance of cross domain calls, like Opal [25], CHERI [58, 59] CODOMs [55], and Mondrian
memory protection (MMP) [60, 61]. In these extensions, a domain is a new abstraction of execution
subject (i.e., a piece of code) that has its own identity (i.e., domain ID), instead of a traditional process
isolated by address space. For example, CODOM [55] provides efficient support for protecting
multiple software components (domains) inside a single address space. It associates a tag for every
page and a list of tags for code pages, representing the data/code they can access/invoke. Therefore,
a domain includes a set of code pages as well as the data and privileged instructions it can use.
CHERI [58, 59] implements a capability system on hardware to provide fine-grained isolation in a
single address. The capability system isolates different domains. The domain switching of CODOMs
and CHERI can be done directly at an unprivileged level without trapping to the kernel, which is a
huge advantage against software optimizations.

Limitations of Hardware-based Optimizations. A distinct flaw of CODOMs and CHERI is that
they only optimize intra-process communication, i.e., requiring all the communicating components
to locate in a single address space. Most of the existing applications use the multi-address space
model. It is hard for them in a single address space to use the traditional OS primitives like the fork,
in which the parent and child processes can use the same address. Besides, domain-based isolation
usually incurs many hardware changes. For example, CODOM needs to check the permission for
each memory operation (dTLB, new capability registers, access protection lists, and others) and
switch the capability for calls/rets (similar but much more complicated than xcall/xret). Moreover,
these systems usually require non-trivial changes to existing OS kernels designed to multiple
address space scenarios. Systems like CHERI adopt a hybrid approach using both capability and
address space to achieve better compatibility, but switching between address spaces still requires
kernel involvement.

MMP [60, 61] achieves efficient domain switching based on protection domain and call gate,
and can retain the address space-based isolation. However, it still requires a privileged domain
for permission checking (i.e., trapping into the privileged domain) and therefore can not achieve
Goal-1.

Limitations of Hardware-assisted Direct Switching Mechanisms. CrossOver [38] and Sky-
Bridge [46] leverage a hardware virtualization feature, VMFUNC, which enables a virtual machine
to directly switch its EPT (extended page table) without trapping to the hypervisor. However, VM-
FUNC is not designed for inter-process communication and has several limitations. First, VMFUNC
only switches the EPT but leaves all other privilege states (e.g., page table pointers) unchanged. This

3“gx4-core” means 8 CPUs interconnected, each with 4 cores; each connection is one hop.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2022.

Boosting Inter-Process Communication with Architectural Support 111:9

leads to a complex trampoline to handle all the states [46, 49]. Besides, VMFUNC does not include
a capability-based checking mechanism — any user process can switch to any valid EPTs. Prior
works utilize binary scanning to avoid potential malicious instructions. Last, VMFUNC requires
support from the hypervisor, which is extremely hard when the system is running in the cloud.

User-level Interrupts. Intel released its prototype of an optimized IPC design based on user-level
interrupts (i.e., UIPI [15]), which will bypass the kernel and the scheduler during communication.
UIPI-based IPC design can also achieve Goal-1, but with two fundamental limitations. First, UIPI is
only useful for cross-core communication — a caller and callee in the same core can not communicate
using UIPL Besides, a caller process can only notify a running callee process; otherwise, the kernel
will record the events, and the callee can only handle the call when scheduled again.

3.2 Optimizations on Message Passing

As shown in Table 3, four key requirements to achieve Goal-2 are (1) no TOCTTOU (Time-Of-
Check-To-Time-Of-Use) vulnerability, (2) supporting long messages handover along the calling
chain (without additional copyings), (3) fine-grained message granularity, and (4) few copying
times.

Software-based Optimizations. For long message passing, one simple, secure but not efficient
method is to adopt “twofold copy” (caller — kernel — callee), as shown in Figure 2(a). Some systems,
e.g., LRPC [21], leverage user-level memory sharing to transfer messages and reduce the time of
copying from two to one (caller — shared buffer), as shown in Figure 2(b). However, a malicious
caller may change the message at any time when the callee is running, which leads to a TOCTTOU
attack. One solution is to change the ownership of shared memory by remapping (Figure 2(c)).
However, memory remapping requires kernel’s involvement and causes TLB shootdown. Further,
since such memory is usually shared between two processes, if a message needs to be passed
through multiple processes on an invocation chain, it has to be copied from one shared memory
to another, i.e., cannot support handover.

L4 [39] applies temporary mapping to achieve direct transfer of messages. The kernel will first find
an unmapped address space of the callee, and map it temporarily into the caller’s communication
window, which is in caller’s address space but can only be accessed by the kernel. Thus, one copy
is achieved (caller — communication window). However, the caller still requires the kernel to do
the copying and remapping which will cause non-negligible overhead.

Hardware-based Optimizations. Many hardware-assisted systems [24, 55, 56, 58, 59] leverage
capability for efficient message transfer among domains. CODOMs [55] uses a hybrid memory
granting mechanism combined with a permission list (domain granularity) and capability registers
(byte granularity). By passing a capability register, a memory region can be passed from caller to
callee and forward. However, the owner of the region can access the region anytime, which makes
the system still vulnerable to TOCTTOU attacks. CHERI [58] uses hardware capability pointers
(which describe the lower and upper bounds of a memory range) for memory transfer. Although
the design has considered TOCTTOU issues for some metadata (e.g., file descriptors), it still suffers
TOCTTOU attacks for the data. Intel MPK [50] allows a process to classify its pages into 16 domains
(0 is used by default); each domain can have its own read/write permissions through the (per-thread)
PKRU register. Based on MPK, a process can assign different domains to different threads and allow
zero-copying data transfer among threads by updating the PKRU register. However, MPK can only
be used for intra-process communication.

Limitations: A fundamental limitation of capability or domain-based approaches is that they are
designed for single address space, i.e., only improving intra-process communication.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2022.

111:10 Yubin Xia et al.

IPC-call IPC-call IPC-ret IPC-ret

- ‘->-\\A e A 77 77

Client Server-A Server-B Server-A Client

— B

Kernel Kernel Kernel Kernel

(a) Traditional microkernel system with twofold copy for long message.

Client Server-A Server-B Server-A Client

— - e -

Kernel Kernel Kernel Kernel

(b) System adopting user shared memory, vulnerable to TOCTTOU.

Client Server-A Server-B Server-A Client

— O - - ——————
Kernel Kernel Kernel Kernel
(c) System with shared memory & remapping, needs TLB shootdown.

Client Serv-A Serv-B Serv-A Client N
|:| Message initialization

__D__D_ ‘D‘_ ‘D‘—— |:| App/kernel logic

E Memory copy
IPC logic
(d) Our system with no trap to kernel W Vemory remap

and zero-copy message passing. Address space

Fig. 2. Mechanisms for long message passing.

Opal [35] and Mondrian [60, 61] propose new hardware designs to make message transfer more
efficiently. They use PLB (protection look-aside buffer) to decouple the permission from the address
space translation to achieve byte granularity sharing. However, without additional data copy, they
can neither mitigate the TOCTTOU attacks nor support long messages handover along the calling
chain.

Limitations: A fundamental limitation of PLB-based approaches is that they still suffer from
TOCTTOU attacks and can not support message handover efficiently.

M3 [19] leverages a new hardware component, DTU (data transfer unit), for message transfer.
However, DTU is not suitable for small and medium-size data [47], since the overhead of channel
initialization cannot be well amortized. HAQu [36] leverages queue-based hardware accelerators to
optimize cross-core communication, while XPC can support a more general format of the message.

Limitations: A fundamental limitation of DMA or Queue-based approaches is that they can only
optimize the cross-core (or cross-PU) communication.

4 DESIGN OVERVIEW

This paper proposes XPC, a hardware-software co-design IPC solution. XPC consists of two
extensions on hardware: XPC engine and relay segment. XPC engine provides two new instructions,

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2022.

Boosting Inter-Process Communication with Architectural Support 111:11

“xcall #reg” and “xret”, for IPC call and return respectively, while relay segment is a hardware design
used for zero-copying message transfer. The paper also explores challenges to implementing
the hardware extensions on full-featured architectures (e.g., ARM). and proposes techniques to
overcome them, e.g., a decoupled version of xcall and xret. Besides hardware extensions, XPC also
consists of two software components: the OS kernel acting as the control plane and manages XPC
hardware, and a user-level library that can ease applications to use XPC.

The hardware and software design will be introduced in §5 and §6. This section presents the
high-level insights on how XPC can achieve fast IPC.

User-level Cross Process Call. To achieve fast domain switching, XPC decouples the domain
switching into the control and data planes. The OS kernel is responsible for control-plane tasks.
For example, for a specific connection (e.g., Client-A and Server-B), the kernel will perform the IPC
logics offline, including checking capabilities, affinity, priority, and any other OS-specific tasks. If
the check is passed, the kernel can allow Client-A to directly invoke Server-B without trapping into
the kernel by configuring XPC engine. The “direct invoke” is achieved through XPC engine, which
will be introduced in §5. Since the control plane checking is performed offline, the runtime costs
of a domain switching are only the costs of “direct invoke”, which eliminates the trap and restore
costs, optimizes the IPC logic costs by only checking whether the kernel allows the invocation
(much simpler), and avoids other costs like scheduling queue modification.

Zero-copying Message Transfer. XPC relies on relay-seg (short for “relay segment”) for secure and
zero-copying message transfer. The main idea is that, instead of transferring data, XPC transfers a
mapping from the caller to the callee. A similar design is page remapping, that the kernel unmaps a
set of pages from the caller process and then maps these pages to the callee process. XPC overcomes
two challenges in page remapping. First, remapping requires TLB shootdowns due to page table
modification, which may incur long latency [17]. Second, remapping requires the message size to
be aligned with page size (e.g., 4KB), which may waste memory and cause fragmentation.

The challenges are overcome using relay-seg. A relay-seg is a memory region with its virtual
address ranges and physical address ranges, i.e., the virtual address ranges are backed with continu-
ous physical memory. The address range information is recorded in a new register, seg-reg, and an
extension in MMU is responsible for translating the virtual addresses into physical addresses using
seg-reg. The seg-reg can be passed from a caller to a callee through XPC engine; thus, the callee can
directly access the data within the virtual address range indicated in its seg-reg. In our prototype,
the OS kernel is responsible for assigning the same virtual address region for all relay-segs and
ensuring that the mapped region of a relay-seg will never be overlapped by any mapping of the
page table. Thus, no TLB shootdown is needed on this region.

5 XPC HARDWARE DESIGN
5.1 XPC Engine

This section introduces how XPC engine achieves “direct invoke” in userspace. Specifically, XPC
engine introduces several new abstractions, i.e., x-entry, xcall-cap and link-stack, and two new
instructions, i.e., xcall and xret, for the goals. We introduce the abstractions first and then explain
how they are used together in the two instructions. The hardware extensions are summarized in
Figure 3. For now, we ignore the credit-related extensions (e.g., credit-base-reg, credit table, and
credit index) and will introduce them in §5.2.

x-entry. An x-entry is bound with a procedure that can be invoked by other processes. A process
can create multiple x-entries. All the x-entries are stored in a table named x-entry-table, which is a
global memory region pointed by a register x-entry-table-reg. x-entry-table is system-wide global

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2022.

111:12 Yubin Xia et al.

CPU Core DRAM

X-Entry Table

XPC Engine XPGStat i b
ate | »| PageTable iy =il SegList | TPIDR | TPIDRRO | Pstate | St | vaig
Pointer Pointer Address Index
x-entry-table-reg }—~

e ».| Caller Page Caller Return | Caller Relay | Caller Credit 0
[OReg 7| Table Pointer Capability Addr Segment Seg List THER || MAERRD || P Index Ve
| seg-mask | | seg-list-reg % ‘
xcall Cap Bitmap Relay Segment List Credit Table
: - '
'
’1 = 01111100 VA Base PA Base Length Permission Credit
B Relay Segment \\\ 001110...

VA Base | PA Base | Length | Permission l

Relay Segment Mask Offset | Length

Fig. 3. XPC Engine: x-entry-table holds all x-entries, each of which represents an XPC procedure. xcall
capability bitmap indicates which x-entries can be invoked by current thread. A link stack is used to store the
linkage record. A credit table is used to store credits for x-entries. Two new instructions xcall and xret perform
the call and return operations, handled by XPC Logic. XPCState maintains the execution states of decoupled
xcall and xret instructions. seg-reg, seg-mask and seg-list-reg provide a new address mapping method called
relay segment to transfer message.

and shared by all processes. Each x-entry has an ID, which is its index within the x-entry-table. A
new register, x-entry-table-size, controls the size of x-entry-table, and makes the table adjustable.

An x-entry contains fields describing a remote procedure, as shown in Figure 3. In our current
design, it includes page table pointer of remote procedure, entry address (i.e., the program counter
of the handler function in the page table), seg-list-reg, credit index and a valid bit. The credit index
and seg-list-reg will be introduced in §5.4 and §5.2 individually. For ARM, an x-entry also include
three ARM-specific states, TPIDR, TPIDRRO, and PState, which are per-thread registers/states for
ARM. With all the information, XPC can switch from a caller process to a callee process without
kernel involvement.

A caller needs an xcall-cap (short for “XPC call capability”) to invoke an x-entry.

xcall-cap. xcall-cap records the XPC invocation capability of each x-entry. We use a bitmap to
represent xcall-cap, as shown in Figure 3. Each bit with index i represents whether the thread” is
capable of invoking a corresponding x-entry with ID i. The bitmap is stored in a per-thread memory
region pointed by a register, xcall-cap-reg (also per-thread), which is maintained by the kernel and
used by the hardware.

An xcall-cap will be checked during an xcall. Therefore, the kernel can set a bit on the bitmap to
allow a specific client to call a specific server directly if the offline checking passes; otherwise, the
kernel can reject the direct call.

xcall. The xcall #reg instruction is used to invoke an x-entry whose ID is specified by the register.
The XPC engine performs four tasks in the processor during this instruction: checking capability,
fetching x-entry, pushing linkage record, and switching contexts.

(1) The XPC engine checks the caller’s xcall-cap by reading the bit at #reg in the xcall-cap bitmap,
which is per-thread bitmap and indicated by xcall-cap-reg (per-thread).

4 As a process may contain multiple threads in most modern OSes, we use thread instead of process here for accuracy.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2022.

Boosting Inter-Process Communication with Architectural Support 111:13

(2) The XPC engine loads the target x-entry from x-entry-table (a global table indicated by
x-entry-table-reg) and checks the valid bit of the entry.

(3) The XPC engine prepares a linkage record to record the caller’s information, and pushes it to
the link stack. Linkage record and Link stack will be used for xret.

(4) The XPC engine update processor states according to the fetched x-entry, including page
table pointer, program counters (set to the procedure’s entrance address), and others.

The XPC engine does not switch other general registers, e.g., stack pointer, and leaves them to
XPC library and applications to handle. The engine will put the value of the caller’s xcall-cap-reg
in a general-purpose register as an unforgeable badge, which can help a callee identify the caller
as used in modern microkernels like seL4 [16]. Any exceptions that happen in the process will be
reported to the kernel.

Linkage Record & Link Stack. Besides x-entry and xcall-cap, we still need an abstraction to save
the caller’s information, e.g., caller’s page table and return address, which is necessary for IPC
return. We use the term, linkage record, to represent the information. A linkage record maintains
calling information that can only be accessed by the kernel, which is very similar to the fields in
x-entry.

In our current design, a linkage record includes page table pointer, return address, xcall-cap-reg,
seg-list-reg, relay segment credit index, and a valid bit. Besides, it can also include architecture-specfic
registers when necessary, e.g., three ARM-specific states, TPIDR, TPIDRRO, and PState in Figure 3.
The XPC engine does not save other general registers and leaves them to the XPC library and
applications to handle. A link stack is used to store linkage records, which is a per-thread memory
region pointed by a register, link-reg. Both link stack and link-reg can only be accessed by the kernel
and used by the hardware.

xcall. The xcall #reg instruction is used to invoke an x-entry whose ID is specified by the register.
The XPC engine performs four tasks in the processor during this instruction: checking capability,
fetching x-entry, pushing linkage record, and switching contexts.

(1) The XPC engine checks the caller’s xcall-cap by reading the bit at #reg in the xcall-cap bitmap,
which is per-thread bitmap and indicated by xcall-cap-reg (per-thread).

(2) The XPC engine loads the target x-entry from x-entry-table (a global table indicated by
x-entry-table-reg) and checks the valid bit of the entry.

(3) The XPC engine prepares a linkage record to record the caller’s information, and pushes it to
the link stack. Linkage record and Link stack will be used for xret.

(4) The XPC engine update processor states according to the fetched x-entry, including page
table pointer, program counters (set to the procedure’s entrance address), and others.

The XPC engine does not switch other general registers, e.g., stack pointer, and leaves them to
XPC library and applications to handle. The engine will put the value of caller’s xcall-cap-reg in
a register (e.g., t0 in RISC-V) as an unforgeable badge, which can help a callee identify the caller
as used in modern microkernels like seL4 [16]. Any exceptions that happen in the process will be
reported to the kernel.

xret. The xret instruction pops a linkage record from the link stack and returns to the previous
process. The CPU checks the valid bit of the popped record and restores the caller’s context
accordingly.

Optimizations. Two optimizations are proposed to reduce the latency of XPC instructions further.
First, we add a dedicated cache to optimize memory accesses of the XPC engine when fetching
x-entry and capability. This design is based on two observations: () IPC has high temporal locality

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2022.

111:14 Yubin Xia et al.

(for a single thread); (2) IPC is highly predictable and friendly to prefetching. Thus, we use a
software-managed cache to store x-entries. Prefetching is supported so that an x-entry can be loaded
to the cache in advance. As shown in §8.2, we can save 12 cycles by prefetching.

Besides, at the point of pushing a linkage record, XPC engine is ready to perform switching. Thus,
we can lazily save the linkage record to link stack using a non-blocking approach to hide the latency
of stack writing. As shown in §8.2, the optimization can save 16 cycles.

5.2 Concurrent Communication and Credit System

The design of xcall and xret can support concurrent communication, i.e., multiple caller processes
can invoke xcall to communicate with the same callee process. However, we still lack a mechanism
restricting the maximal concurrent callers.

Motivation. Without such a mechanism, supporting concurrent communication may impose a
substantial burden on software. First, it requires all server threads to be able to handle multiple
invocations. However, some applications, e.g., Android services that use Android Binder for IPC,
assume each server thread to handle one request at a time.

Besides, it requires the kernel to handle concurrent traps from the different threads (with the
same context), which complicates the OS implementation. For example, two caller threads may
invoke the same callee thread simultaneously. As a result, there will be two running threads using
the same context, including page tables, per-thread registers, and others, inherited from the callee
thread. During the execution, the two threads may trap into the kernel at the same time, e.g., to
handle a syscall, and the kernel will get confused by finding that two threads are trapped with
the same context. This will usually lead to kernel panic without (usually complicated) kernel
modification.

Another possible solution is to use the wrapper on the callee side to reject invocation when the
last call is not finished. However, there is still a time window (although very short) that multiple
callers are running using the callee’s contexts after xcall. These callers are still possible trapping
into the kernel (e.g., timer interrupt), which will require OS kernel modifications to handle the case.

In XPC, we introduce Credit system [3, 19], which allows the kernels to explicitly control the
concurrent communication and limit the maximal concurrent callers. Therefore, OSes like Linux
can enforce that one callee thread can only be invoked by one caller process at one time and rely
on the thread pool to handle concurrent communication.

Credit system. XPC’s credit system includes a new global table, credit table. Each entry of the table
records a credit value, which indicates the allowed invocations. The x-entry-table-size manages the
number of entries. We add a new field in each x-entry, credit index, which is an index in the credit
table. As a result, the credit of an x-entry would be credit_table[credit_index]. The main reason
to use credit index instead of credit value in x-entry is to allow sharing credits between different
x-entries. For example, a server thread may register two services for clients but can only handle
one request at a time. In this case, the server thread can ask the kernel to use the same credit index
for the two services, which can control the maximum concurrent invocations for the two services.
The initial value of credits is managed by the kernel.

During xcall, XPC engine will first check the credit. If the value is 0, the xcall returns an
error code to the caller. Otherwise, it atomically decreases the credit in the credit table (i.e.,
credit_table[credit_index] —= 1). To ease the recovery of the credit, xcall will push the credit
index in linkage record. xret will increase the credit according to the index information (i.e.,
credit_table[credit_index] += 1).

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2022.

Boosting Inter-Process Communication with Architectural Support 111:15

xcall-load xcall-store xcall-switch

break
—>| Load credits
Check credits

Write PT_reg
Store
credits+1 "
Write PC_reg

xentry_id Load xcall-

bitmap/check

|

i

Write
stack_reg

Store
credit_index

Store
oPSTATE

Load nPT

Load nPC

Load

Switch Write
nCapBase Store
oTPIDRRO CapBase.reg
Load nTPIDR Write TPIDR
Store oTPIDR
Load Write
nTPIDRRO Store TPIDRRO
oCapBase
Load Write PSTATE
NPSTATE Store oPC - ¥

barrier
Load

credit_index

Store oPT

break
Fig. 4. XPC(xcall)+credits in ARM using ;1OPs. A single instruction with too many pOPs is hard to be
implemented in ARM devices. Relay segment-related registers are omitted here.

5.3 Decoupled XPC Instructions

Motivation. To achieve better performance, xcall and xret are suggested to be implemented in the
CPU core as two complete instructions. However, the quite complex logic in the two instructions
may violate their practicality. For example, the implementation of ARM architecture uses pOP,
which is the basic operations that form ISA-level instructions to implement complicated instructions.
Although an ARM instruction can be composed of multiple pOPs, there is usually an upper bound
of the number of pOPs because too many pOPs may cause several issues, e.g., the instruction would
be easy to be interrupted during execution or affect the pipeline design. The concrete upper bound
depends on the design and implementation of hardware.

An implementation of xcall using the pOP (in Gem5) is shown in Figure 4. Because of the complex
logic in xcall, it needs at least 19 pOPs, which is a long path that is very hard to be implemented in
real devices.

Instruction Decoupling. To solve the issue, this paper proposes a new mechanism, instruction
decoupling, that decouples a complex instruction into multiple simple instructions, and the compo-
sition of these simple instructions has the same semantics as the complex instruction. The insight
behind the design is that we can sacrifice some performance and usability for practicality.

For example, xcall is decoupled into three simpler instructions, xcall-load, xcall-store and xcall-
switch, as shown in Figure 4. xcall-load will load the target process’s states which are recorded in
x-entry. xcall-store will store the current states into the link stack, while xcall-switch will finally
check credits and switch to the new states. We add internal registers to record values prepared
by a prior instruction but used in successive instructions, e.g., xcall-load saves the loaded credit
index into tmp-credit-index-reg which is used by xcall-store to push linkage record into link stack.
Therefore, a process can sequentially invoke the three instructions to achieve the same results as a
single xcall. Similarly, xret is decoupled into two instructions: (1) xret-load to load a linkage record
into temporal registers; and (2) xret-switch to switch the context to the caller.

Challenges. We need to solve two challenges to decouple xcall and xret. First, we need a generic
way to split OPs into different decoupled instructions that achieves both great performance and
usability. Second, we should ensure the security of the decoupled instructions. As invocations of

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2022.

111:16 Yubin Xia et al.

xret_load xret_switch

(any) 1]

xcall_load xcall_switch

xcall_store

Fig. 5. State transition with XPCState.

decoupled instructions can be interrupted, some states dependent on the successive instructions
may have been changed. For example, the capability is checked in xcall-load. Nevertheless, before
xcall-save and xcall-switch, the capability may have been revoked. As the successive instructions
do not recheck the value, they will still succeed and lead to errors. Moreover, a malicious process
may randomly invoke the three instructions in the wrong order.

Techniques. We propose two techniques to resolve the above challenges. First, we decouple xcall
and xret based on two rules: (1) each decoupled instruction should perform similar zOPs, and (2)
each decoupled instruction should touch a few cache lines. As a result, the xcall-load in Figure 4
performs (mostly) memory loading, in which a single x-entry could be aligned in a single cache
line (one cache miss at the worst case).

Second, XPCState is introduced to overcome the second challenge, as shown in Figure 5. It
includes two bits® in XPC. Different values of XPCState represent the different states in the state
machine shown in the figure. XPCState is changed by the kernel or the decoupled instructions.
The figure shows the allowed transitions performed by the instructions. For example, xcall-load is
allowed to perform on any state, and will transfer the XPCState into 0b01, while xcall-store is only
allowed to perform on state 0b01, and transfer to 0b10. xcall-switch is only allowed to perform on
state 0b10. These transitions enforce only the sequence: xcall-load— xcall-store— xcall-switch will
succeed (for xcall). The XPCState is visible to the kernel, so the kernel can leverage it to manage
the transition. For example, the kernel can turn a process’s XPCState into 0b00 when it changes
the process’s capability. The simple strategy can avoid the prior case that the capability is changed
during xcall-load and xcall-store.

Notably, the paper does not aim to provide a generic or optimal solution to implementing complex
instructions. The decoupled instruction method proposed here is designed for supporting XPC on
complicated hardware like ARM-based devices. However, we believe other systems can still learn
from our approach to solve similar issues.

5.4 Relay Segment

Relay Segment (relay-seg). A seg-reg register is introduced as an extension of the TLB module for
mapping a relay-seg. It includes four fields: virtual address base, physical address base, length, and
permission. The virtual address base and the length together represent a virtual memory region (i.e.,
from VA_BASE to VA_BASE + LEN). Similarly, the physical address base and the length together
represent a physical memory region. A valid seg-reg means the virtual memory region is directly
mapped to the physical memory region. Moreover, the permission indicates how a user can access
the virtual memory region, the same as permission bits used in page table entries. During address
translation, the seg-reg has higher priority over the page table and TLB.

seg-mask register. User applications cannot directly change the mapping of seg-reg. Therefore, to
help applications dynamically change the range of seg-reg, we introduce a new register seg-mask,

5The size could be extended in more complicated cases.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2022.

Boosting Inter-Process Communication with Architectural Support 111:17

A’s Relay-seg B’s Relay-seg

seg reg

seg-mask reg

Client-A Server-B Server-C
~ v ~ v

~ -
~< - S~ -7

xcall xcall

Fig. 6. Operations on relay-seg. (1) In Client-A, the process will only use the relay-seg memory masked by
the seg-mask register; (2) During xcall from Client-A to Client-B, the masked relay-seg is transferred to the
Client-B; (3) Client-B utilizes the swap-seg instruction to swap the relay-seg with an entry in seg-list; (4)
During xcall from Client-B to Client-C, the new relay-seg is transferred to Client-C.

which can be used by user applications to shrink the range of current relay-seg and pass the new
range to the callee. This is useful when only a part of the message should be passed to the callee,
especially along a calling chain. Figure 6 shows the registers and operations of a relay-seg.

Multiple relay-segs. A server can create multiple relay-segs, which will be stored in a per-process
memory region called seg-list managed by kernel and pointed to by a new register, seg-list-reg. One
process can use a new instruction, swapseg #reg, to atomically swap the current seg-reg with the
one indexed by #reg in its seg-list. By swapping with an invalid entry, a thread can invalidate the
seg-reg.

Ownership of relay-seg. To defend against TOCTTOU attacks, the kernel will ensure that each
relay-seg can only be active on one CPU core at a time. In other words, an active relay-seg can only
be owned by one thread, and the ownership will be transferred along its calling chain, so that two
CPU cores cannot operate one relay-seg at the same time.

Return a relay-seg. During an xret, the callee’s seg-reg must be the same as when it is invoked.
The XPC engine will check the current seg-reg with the seg-reg and seg-mask saved in the linkage
record. An exception will be raised if the check fails, and the kernel will handle it.

6 XPC SOFTWARE DESIGN AND IMPLEMENTATION

XPC’s software components include kernel support and an XPC library. The kernel is in charge of
managing x-entry, xcall-cap, relay-seg, and exception handling. The XPC library is optional, which
can ease the usage of the XPC mechanism.

6.1 OS Kernel Support

We have supported three OS kernels for XPC: two state-of-the-art microkernels (seL4 and Zircon [2]
and Linux. Most modifications to the OS kernels are similar, and we will clarify the differences
between microkernel systems and Linux when necessary.

System Calls. The kernels provides new syscalls to allow a user-level process to: register and
unregister an x-entry (i.e., xpc_register_x_entry and xpc_unregister_x_entry), allocate and free a relay
segment (i.e., xpc_alloc_relay seg and xpc_free_relay_seg), grant and revoke the xcall capabilities to
other threads (i.e., xpc_grant_service and xpc_revoke_service).

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2022.

111:18 Yubin Xia et al.

e xpc_register_x_entry: The user thread should pass the entry address, service name, and initial
credits to the OS kernel. The kernel will construct an x-entry including provided information
with page table pointer, xcall-cap-reg and other informations of the thread, and add the entry
into the global x-entry-table. The return value is an index (representing the x-entry ID) on
success, and error code on error, e.g., no space in x-entry-table.

e xpc_unregister_x_entry: The kernel will check whether the user thread is the owner of an

x-entry and remove the entry from x-entry-table. Besides, the kernel will clear relative bits in

all xcall bitmaps.

xpc_alloc_relay_seg: The kernel will allocate a relay segment with indicated length. The

mapping of the relay segment will be writen into the seg-reg if seg-reg is invalid now or into

an empty entry of seg-list if seg-reg is used.

e xpc_free_relay seg: The kernel will free a list of relay-segment in seg-reg or seg-list.

In the above implementations, we omit some checking details, e.g., the OS kernel should check that
the provided entry address is not in kernel space.

Capability. Capabilities have been widely used to manage IPC [34, 52]. Our software implementa-
tion introduces two capabilities for each x-entry: xcall-cap and grant-cap. xcall-cap represents the
capability to invoke an x-entry — a caller thread can only use xcall to invoke an x-entry (of calee)
when it has the x-entry’s xcall-cap. grant-cap represents the capability to grant/revoke an xcall-cap
or grant-cap.

The kernel will maintain a capability list for each thread. When a thread creates an x-entry (using
xpc_register_x_entry), it will have both the grant-cap and xcall-cap of the new x-entry, and can
grant the xcall-cap to other threads (i.e., xpc_grant_service and xpc_revoke_service).

In our prototype, the xcall-cap is implemented by the hardware xcall capability bitmap, and the
grant-cap is implemented by the OS kernel to transfer capabilities.

XPC Contexts in Kernel. The OS kernels introduce a new context, named xpc_context, including
XPC’s per-thread registers, i.e., xcall-cap-reg, seg-reg, seg-mask, seg-list (can be per-thread or per-
process), and link-reg (per-process). The xpc_context will be saved and restored during context
switching.

Split Thread Model. A significant challenge to the kernel is that kernel-bypassed domain switching
may lead to misbehavior of the kernel since the kernel is not aware of the current running thread.
For example, caller A issues xcall to callee B, which then triggers a page fault and traps into the
kernel. If the kernel is not aware of the xcall, it will mistakenly use A’s page table to handle B’s
page fault.

To solve this problem, we propose a generic model, split thread model, which is inspired by the idea
of migrating thread [31] to separate the kernel-maintained thread state into two parts: scheduling
state and runtime state. The scheduling state contains all the scheduling-related information,
including kernel stack, priority, time slice, etc. The runtime state contains the current address space
and capabilities, which are used by the kernel to serve this thread. Each thread is bound with one
scheduling state but may have different runtime states when running.

In our implementation, we use xcall-cap-reg to determine runtime states. The OS kernel (or XPC’s
kernel module) will maintain the map in its memory. When a new thread is created or destroyed,
the xcall-cap-reg and the xcall-bitmap will be allocated or freed, and the kernel module will update
the map accordingly. As xcall-cap-reg is per-thread and will be updated by hardware during xcall,
once a thread traps into the kernel, the kernel will use the value of xcall-cap-reg as an index to find
the current runtime state through the map.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2022.

Boosting Inter-Process Communication with Architectural Support 111:19

1 struct Node {

2 /* the data being stored in the node */

3 data;

4 /x reference to the next node, NULL for last node */
5 struct Node* next;

6 /x ... specific fields */

73}

8 struct List {

9 /x first node of list; NULL for empty list %/

10 struct Node*x firstNode;

11 3};

12

13 /* caller ensure list is in the relay segment */

14 void handle_list(struct List list) {

15 » assert(node->next >= relay-seg.begin) «

16 » assert(node->next+sizeof(node) <= relay-seg.end) <«
17 struct Node * node =

18 xpclib_get_pointer(list->firstNode);

19 » Loop_start «

20 while (node != NULL) {

21 /* do something with node.data */

22 » assert(node->next >= relay-seg.begin) «

23 » assert(node->next+sizeof (node) <= relay-seg.end) «
24 node = xpclib_get_pointer(node->next);

25 » Loop_validate «

26 %}

27 }

Fig. 7. Linked list protected by XPC library. The xpclib_get_pointer is provided to fetch pointers from
the relay segment, which will validate the fetched pointer’s boundary.

The idea of migrating thread needs to carefully decouple the thread state in the whole kernel,
which is hard to be implemented in a monolithic kernel like Linux. Fortunately, most of the
monolithic kernel relies on a set of specific interfaces to get thread-specific resources, e.g., Linux
uses current and current_thread_info() to get the resources and handle exceptions and syscalls.
Therefore, we can solve the issue by updating these interfaces: () check whether the thread has
been changed (using xcall) by comparing the xcall-cap-reg (per-thread); 2) find the correct thread
by xcall-cap-reg (OS maintains a map between the xcall-cap-reg to task_struct); and (3) return the
correct thread to the kernel.

Implementation Efforts. Compared with prior systems [55, 58, 59], the OS implementation efforts
for XPC are small for two reasons. First, XPC only affects IPC-related modules in OS kernels but
will not affect other modules like memory and address space management, file system, networks,
etc. Instead, prior hardware-assisted systems (e.g., CODOM) usually requires running multiple
processes (or domains) in a single address space, which will break abstractions like fork.

Although we should modify the scheduler to save and restore XPC contexts, we do not need
to modify existing logic but simply add our new routines, e.g., in Linux, the function to save and
restore XPC contexts is wrapped by a new config (CONFIG_XPC) and can be easily disabled. In
this way, our modifications are easy to be maintained along with the kernel development.

Besides, our experiences of supporting three different kernels have proven that most modifications
are similar to different kernels and XPC is easy to integrate with existing OSes. A developer can
follow previous patches to support XPC in a new OS.

6.2 User Library Implementation

We propose XPC library to ease the usage of the XPC mechanism. In our evaluation (§8), all
applications, including the Android Binder optimized with XPC, utilize the library to use XPC
instead of directly invoking syscalls and XPC instructions. Developers are also free to design and
use their own libraries.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2022.

111:20 Yubin Xia et al.

Concurrent Communication: The XPC library can support different concurrent communication
methods.

First, XPC library allows multiple clients to invoke a single x-entry at the same time. When
creating an x-entry, a server process should specify a maximal number of concurrency, e.g., CN.
Then, XPC library will prepare CN invocation contexts, which include an execution stack (called
C-Stack) and local data (e.g., TLS, states dedicated to the server thread) to support simultaneous
IPC calls. Besides, the library will add a trampoline for each x-entry. The trampoline will select
an idle invocation context, switch to the corresponding C-Stack and restore the local data before
invocation, and release the resources before return. If no idle context is available, the trampoline
either returns an error or waits for an idle one. The credit value of the x-entry is set to the number
of concurrencies, i.e., CN.

Besides, XPC library also supports concurrent communication based on the thread pool. When
creating an x-entry, the library will prepare a thread pool with worker threads registered in the
kernel. The kernel will allocate different x-entries for different worker threads. When a client
connects to a service, the kernel will pick an x-entry of the service to the client. After connecting,
the client can invoke a server directly using xcall with the x-entry of the service. The current
implementation uses a round-robin policy to pick the x-entry. The credit value of the x-entry is set
to one.

Message Passing. Message marshaling is one of the major bottlenecks for data transfer among
different address spaces. XPC can mitigate the costs of marshaling as the relay segment uses the
same virtual address range in caller and callee processes; therefore, we can use any self-contained
data structures in the relay segment without marshaling. Figure 7 presents a case of using a linked
list on the relay segment. The handle_list function will traverse a list in the relay segment and
perform some work on each node.

To avoid a malicious caller putting an out-of-boundary pointer in the data structure, the library
has provided some helper functions for pointer operations. For example, xpclib_get_pointer will
check the boundary of a pointer to ensure it is located in the range. The library does not allow any
pointers pointing to non-relay segment memory without explicit confirmation. Besides, to avoid
infinite loop, the library will initialize a counter before a loop start (i.e., Loop_start) and validate
the counter (i.e., Loop_validate). The threshold is user-defined. With all these helper functions,
processes can safely use the relay segment’s data structures without marshaling.

Notably, checking pointers may incur higher costs when many pointers are in the relay segment.
In such cases, users can choose to marshall/unmarshal the data instead.

7 HARDWARE IMPLEMENTATION

Integration into RocketChip. XPC engine is implemented as a unit of a RocketChip core, which
is an open-sourced RISC-V core FPGA implementation [18]. We implement the prototype on the
Xilinx VC707 FPGA board.

Table 4 shows detailed information about the new registers as well as instructions. A simplified
version of engine cache is implemented for evaluation, which contains only one entry and relies on
software management including prefetching and eviction. The prefetching is also invoked by xcall
#reg, but with a negative ID value (-ID). We do not implement the credit system extension and
decoupled instructions in RocketChip.

Integration into Gem5. We also implement XPC on the ARM platform using Gem5 simulator [23].
The implementation is based on ARM HPI (High-Performance In-order) model [1], which mimics
a modern in-order ARMv8-A implementation. We use pOPs to implement the functionalities of

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2022.

Boosting Inter-Process Communication with Architectural Support

111:21

Table 4. Registers and instructions provided by XPC engine.

Register Name Access Priv. Register Length Description
(R/W in kernel)
x-entry-table-reg VA length Holding base address of x-entry-table.
x-entry-table-size 64 bits Controlling the size of x-entry-table.
xcall-cap-reg VA length Holding the address of xcall capability bitmap.
link-reg VA length Holding the address of link stack.
relay-seg R/ in user mode 3%64 bits Holding the mapping and permission of a relay
segment.
seg-mask R/W inuser mode 264 bits Mask of the relay segment.
seg-listp R/ in user mode VA length Holding the base address of relay segment list.
credit-base-reg VA length Holding the base address of credit table.
XPCState VA length Execution state of decoupled XPC instructions.
Instruction Execution Priv. Instruction Format Description
xcall User mode xcall #register Switching page table base register, PC and xcall-
cap-reg, according to the x-entry ID specified by
the register. Pushing a linkage record to the link
stack.
xret User mode xret Returning to a linkage record poped from the link
stack.
swapseg User mode swapseg #register Switching current seg-reg with a picked one in the
relay segment list and clearing the seg-mask.
xcall-load/-store/-switch ~ User mode xcall-load #register; Decoupled instructions for xcall.
xcall-store; xcall-
switch
xret-load/-switch User mode xret-load; xret-switch Decoupled instructions for xret.

Exception

Fault Instruction

Description

Invalid x-entry
Invalid xcall-cap
Invalid linkage
Swapseg error
Invalid seg-mask

xcall

xcall

xret

swapseg

csrw seg-mask, #reg

Calling an invalid x-entry.

Calling an x-entry without xcall-cap.

Returning to an invalid linkage record.
Swapping an invalid entry from relay segment list.
Masked segment is out of the range of seg-reg.

XPC engine. By carefully choosing the order, we can avoid speculative issues in the xcall and xret
instructions. We set the endpoint table entries to 512, length of capability bitmap to 512 bits, and
call stack to 512 entries. Any load/store instructions issued by user-space on these regions will
trigger an exception, which is enforced by hardware during the permission checking of load/store
instructions. The implementation contains basic XPC functionalities, as well as credit system
extension and decoupled instructions. It does not contain any optimizations like non-blocking link
stack and engine cache.

8 EVALUATION

To evaluate XPC, this section answers several questions:
e How XPC improves the IPC performance? (§8.2)
e How OS services benefit from XPC? (§8.3)

e How applications benefit from XPC? (§8.4)
e How much hardware resource XPC costs? (§8.6)

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2022.

111:22

Table 5. Simulator configuration.

Parameters

Values

Cores

I/D TLB

L1 I/D Cache

L1 Access Latency
L2 Cache

L2 Access Latency
Memory Type

8 In-order cores @2.0GHz

256 entries

32KB, 64B line, 2/4 Associativity
data/tag/response (3 cycle)
1MB, 64B line, 16 Associativity

data/tag (13 cycles), response (5 cycle)

LPDDR3_1600_1x32

Trampoline B3

140 |-

xcall
TLB

120 |-

100 |-

S
o5
olels

5

555
9%
XX
2

%S
‘:
o

2

IPC Time (cycles)

SIS
S,
X KKK KX
QLR
Sotototeds
50RK
SRS
odedelelotel

0%
%5

29%8S
0’0
20
5
55
X

%
XX

XX

v

%
%
2%
%
’0

S
XX

5%
9598
003
%
So%s
55
55
XX

%

e

o2l
o

o2

Full-Cxt

Fig. 8. XPC optimizations and breakdown (FPGA RISC-V).

8.1 Methodology

Partial-Cxt +Tagge

a

-TLB +Nonblock +Engine
LinkStack Cache

Yubin Xia et al.

We implement the XPC engine based on GEM5 simulator (ARMv8) and two open-source RISC-V [57]
implementations: siFive Freedom U500 [14] (on Xilinx VC707 FPGA board) and lowRISC [4] (on
Xilinx KC705 FPGA board). The Gem5 implementation includes all features (i.e., the basic XPC,
decoupled XPC and credit system), while FPGA implementations include the basic functionalities
(i.e., the basic XPC). We have ported two state-of-the-art microkernels, seL4° on SiFive Freedom
U500 and Zircon [2] on lowRISC, and added XPC support in both systems.

We also support XPC in Linux (Gem5). We port the Android Binder framework, libBinder, to
both Gem5 (with Linux 4.4) and Freedom U500 (with Linux 4.15) and optimize the synchronous
IPC in Binder with XPC. The simulation parameters of Gemb5, listed in Table 5, mimic a modern
in-order ARMv8-A implementation. We evaluate the performance of six systems: Android Binder,
Zircon, seL4, Android Binder-XPC, Zircon-XPC, and seL4-XPC.

8.2 Microbenchmark

Optimizations and Breakdown. We use the following five implementations with different opti-
mizations enabled to measure the latency of IPC and show the breakdown of performance benefits.

e Full-Ctx: saving and restoring full context.
e Partial-Ctx: saving and restoring partial context.

%seL4 already supports RISC-V. Our porting work mainly focuses on adding SMP support.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2022.

Boosting Inter-Process Communication with Architectural Support 111:23

e +Tagged TLB: enabling previous optimizations and adopting tagged TLB to mitigate TLB
miss.

¢ +Non-blocking Link Stack: enabling previous optimizations and adopting non-blocking
link stack.
¢ +XPC Engine Cache: enabling previous optimizations and adopting cache for XPC engine.

Figure 8 shows the cycles of one IPC call using different configurations. In the “Full-Cxt” config-
uration, as the RocketChip does not support tagged TLB yet, it will incur about 40 cycles of TLB
flush/miss penalty. The trampoline code (mentioned in §6.1) takes 76 cycles to save and restore the
general purpose registers. The logic of xcall takes about 34 cycles. The “partial-context” optimiza-
tion only consider necessary registers (e.g., stack point register and return address register) and
reduce the trampoline code to 15 cycles. The TLB flushing could be mitigated by adopting tagged
TLB. The “Non-blocking Link Stack” hides the latency of pushing linkage record, which can reduce
the latency by 16 cycles. The “Engine Cache” uses prefetching to further reduce the latency by 12
cycles. With all the optimization, one xcall can achieve 6 cycles and one IPC only spend 21 cycles.

In the following evaluation, XPC will use “Full-Cxt” with “Non-blocking Link Stack” optimiza-
tions, to ensure the fairness of the comparison.

selL4 (cross cores) —8—
100K R Ezzfnﬂlz ggg = B 100K | seL4-XPC (cross cores) —¥— a
_ : N Barrelfish (cross cores) —6—
k4 5
210K 210K
2 oA
g f\ﬂ,e/// g
& 1K ~ £ 1K
—O0—o—O—¢ —o—6—o
LH(—)HH%HHHH KX
100‘ : 100‘

0 64 128 256 512 1K 2K 4K 8K 16K 32K 0 64 128 256 512 1K 2K 4K 8K 16K 32K
Argument Size (Byte) Argument Size (Byte)

(a) One-way call (same-core) (b) One-way call (cross-core)
140
135

Linux-XPC (Gem5) —%—

—_
(%]
(=}

N
S W
/}%

)
W

N\ R
N

Time (kticks)
=

)
S

100

1 2 3 4 5 6 7 8 9
Concurrency

(c) Concurrent communication.

Fig. 9. IPC performance.

One-way Call. We also evaluated the one-way call performance. A client calls a server with
different message sizes. We calculate the cycles from the client invoking a call to the server getting
the request. As shown in Figure 9 (a), seL4-XPC has 5-37x speedup over the fast path of seL4. One
reason is that seL4-XPC uses relay-seg to transfer messages, while in seL4, the kernel-copying is

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2022.

111:24 Yubin Xia et al.

Table 6. Concurrent communication with shared server thread. The table presents end-to-end latency
to call a remote shared service. “x”c means there are “x” concurrently running client processes invoking the
same service. The service has only one worker thread, which is protected by the credit system. The service
handler will perform long-latency operations (e.g., invoking syscalls) to increase the chances of contention.

Systems 1c 2c 4c 8c
XPC (kticks) 63,284 63,507 64,369 64,060

only used when the message is less than 120 bytes, and it uses shared memory to transfer large
message. As the message size grows, the speedup comes more from the benefit of relay-seg. seL4
only uses slow path when the message size is medium (64B here).

We also evaluated the same test for Zircon and Zircon-XPC, and the results show that Zircon
requires 20,569 cycles for 0B messages and 74,825 cycles for 4KB messages, while Zircon-XPC
requires 324 cycles’ for 0B messages and 371 cycles for 4KB messages. Zircon-XPC can have 60x
speedup when the message size is small due to the elimination of scheduling and kernel involvement.
Zircon uses kernel twofold copying to transfer messages and does not optimize the scheduling in
the IPC path, which makes it much slower than seL4.

Cross-core IPC. We also evaluate the cross-core IPC performance as shown in Figure 9 (b). We
compared three methods, IPC of seL4, IPC of seL4 optimized with XPC, and URPC [22] on Linux.
We learned the communication implementation of Barrelfish [20] and LXDs [48] and carefully
implemented and optimized the URPC®. The seL4 and seL4 optimized with XPC are evaluated
on RISC-V FPGA boards, while URPC on Linux is evaluated on an x64 machine (i7-6700 CPU @
3.40GHz). We choose to evaluate URPC on x64 machine because the FPGA RISC-V implementation
does not have the shared LLC now, which is not suitable to illustrate the benefits of URPC’s cache
line-sized messages. In each case, we pined the client and server on different cores and evaluate
one-way call (from caller issues IPC to the server receives the call) latency.

As shown in Figure 9 (b), the performance of cross-core IPC on seL4 is improved from 81x (small
message) to 141x (4KB message size). This is because seL4 turns to use a slow path for all cross-core
invocations. XPC optimized seL4 can achieve great performance because it pulls the server thread
(on another core) to the current core, which is the same as the same-core IPC. URPC represents
the state-of-the-art cross-core IPC performance. Since URPC and sel4 are not evaluated on the
same platform, it is unfair to compare them directly. However, it is sufficient to show how XPC can
significantly improve synchronous IPC (e.g., IPC in seL4) performance which is very close to URPC
results. The result also shows that both synchronous IPC and asynchronous IPC can achieve great
cross-core communication performance.

Last, we want to highlight two points that URPC is better and worse than XPC for cross-core
IPC. First, URPC is better than XPC considering the load balance. A service can easily create
multiple threads/processes on different cores to dispatch requests. Instead, XPC relies on the client
to balance the loads as the server thread is running on the client’s core. Second, URPC relies on
polling to achieve great performance. When the server shares the core with other processes, it may
significantly increase the latency [13]. We believe applications should choose different methods
according to their needs on load balancing, CPU utilization, etc.

Concurrent IPC. We evaluate the performance of concurrent communication using XPC, as shown
in Figure 9 (c). The test is performed on Gem5 (ARM) with Linux. We first start a server process,
which will register a service configured with eight maximum concurrencies and assigned with

7XPC needs more cycles in lowRISC because of the CPU implementation.
8The source code and results are available at https://github.com/Ddnirvana/urpc_tests.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2022.

Boosting Inter-Process Communication with Architectural Support 111:25

Table 7. Cycles of hardware instructions in XPC (FPGA).

Instruction Cycles
xcall 18
xret 23
swapseg 11

Table 8. XPC instruction costs in ARM. dXPC is short for decoupled XPC, which includes three instructions
for IPC call and two instructions for IPC ret. TLB flushing is not included (about 58 cycles), which can be
removed with tagged TLB. It is evaluated in Gem5, and the results are represented using ticks.

Systems Call Return
XPC (kticks) 51 19
dXPC (kticks) 56 20

eight worker threads. After that, we start a set of client processes (from 2 to 8, pinned to different
cores), to get a connection with the service and call the services using XPC (100 times). We present
the average latency for the client processes to finish a single communication. As shown in the
figure, the latency is quite stable among different concurrency. This is because the kernel will
assign a different worker thread to each client; therefore, they can directly communicate to the
server without contention with other clients.

We also evaluate the end-to-end latency of sharing the same worker thread, as shown in Table 6.
The table presents the average latency of calling a remote service by changing the concurrency.
The results show that the latency will increase by 1,085 kticks from 1c to 4c. The reason is that the
server has only one worker thread and will handle each request one by one (guaranteed by the
credit system).

Instructions costs. We measure the cycles for xcall, xret and swapseg instructions (results are
shown in Table 7). Besides the stated xcall, xret takes 23 cycles and swapseg takes 11 cycles. The
costs of the three instructions are small and mainly come from the memory operations, e.g., xcall
needs to fetch an x-entry and push a linkage record to the link stack. Kernels can implement efficient
IPC based on these primitives.

Marshaling. To reveal the benefits of the relay segment on mitigating marshaling/unmarshaling,
we evaluate the performance of transferring a linked list using the relay segment. The list has 1000
entries, and each entry contains a 64bit data and a pointer pointing to the next entry (NULL for the
last one), as shown in Figure 7. The baseline performance is using Binder’s parcel to transfer the
list, 44,536 kticks for marshaling, and 112,648 kticks for unmarshaling, as shown in Table 2.

Our optimized implementation will first construct a linked list in the relay segment with an
existing one on the caller side. The costs of this procedure are 25,851 kticks. It is 1.7x better than
the marshaling in the baseline system. Notably, this procedure can even be mitigated if the caller
directly constructs the list in the relay segment, which is reasonable as it is private unless the caller
explicitly transfers to others. The unmarshaling procedure is much simpler. The callee can directly
use a pointer in the relay segment to represent the list and rely on the helper functions to protect
the security. The procedure to construct the linked list pointer takes 106 kticks and is magnitudes
orders better than the unmarshaling baseline.

The results confirm that the relay segment can effectively transfer the messages by eliminating
marshaling and unmarshaling costs.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2022.

111:26 Yubin Xia et al.

Decoupled XPC. To know whether the decoupling will afect the performance, we evaluate the
latency for xcall, xret and the decoupling version of xcall (xcall-load, xcall-store and xcall-switch)
and xret (xret-load and xret-switch) on Gemb. The result is shown in Table 8. As the GEM5 does not
simulate the TLB flushing costs (in ARM)’, we evaluate the cost of updating TTBRO with instruction
barrier (isb instruction) and data barrier (dsb instruction) in Hikey-960 board (ARMv8) and the cost
is about 58 cycles.

The result shows that decoupling the xcall and xret will incur minor performance impacts, while
it can achieve better practicality to be implemented in real hardware.

Credit System. We also evaluate the concurrent IPC test case by setting credits to the maximum. As
a single server worker thread is allowed to be invoked by concurrent clients, the kernel will see the
same thread trapped into the kernel simultaneously. This can trigger kernel errors, e.g., “unhandled
translation fault”, as our prototype Linux does not support a worker thread to be invoked and
run concurrently. Thus, the credit system eases our concurrent communication implementation,
especially on the complicated monolithic kernel like Linux.

400 200
150 Zircon —8— Zircon —8— 12
- Zircon-XPC —*— — Zircon-XPC —*— .
£ 300 seL4-onecopy —e— Z150 seL4-onecopy —e— 2 10 .
= 250 seL4-twocopy —— = seL4-twocopy —— S s . Zircon —8—
z 00 seL4-XPC 2100 seL4-XPC z Zircon-XPC —*—
=2 v = E 3 = =3
E il] /Y\KY“—‘M”M] ¢
g g 2l | ‘
£ 100 } ft £ sof | |t =
e 29 ¢oeoeetoooy 2 N
Y - am— e - 2
oL B—=— 0 e e 0
2 6 8 10 12 14 16 2 4 6 8 10 12 14 16 500 1000 1500 2000 2500 3000 3500 4000
Buffer size (KB) Buffer size (KB) Buffer size (B)
(a) FS read throughput. (b) FS write throughput. (c) TCP throughput.

Fig. 10. Figure (a) and (b) show the read/write throughput of the file system with different buffer sizes.
Figure (c) shows the throughput of TCP with different buffer sizes. Higher the better. It is evaluated in
FPGA (RISC-V).

Zircon W seL4-twoCopy 1600 encry-Zircon —8—
. 5 cry-Zircon-XPC —%—
25 Zircon-XPC g _ 2 seL4-oneCopy &2 1400 eneny 'm}imi ——
2 2 seL4-XPC A Zircon-XPC
5 2 5 2 1200 .
2 2 1s < 0o
£ £ 5
Z 15 =t £ s00
2 g Es
3 S 2
E ! g £ 600 .
z Z 05 00 s !
0.5 200 \%
0 YCSB-A YCSB-B YCSB-C YCSB-D YCSB-E YCSB-F 0 YCSB—AYCSBVBYCS—CYCSBVDYCSBVE YCSB-F D.,%K 1K 1 ‘SK 2] 25K 3 35K 4
(a) Sqlite3 (Zircon) throughput. (b) Sqlite3 (seL4) throughput. (c) HTTP server throughput.

Fig. 11. Figure (a) and (b) show the normalized throughput of Sqlite3 with YCSB’s workloads. Figure (c)
shows the throughput of an HTTP server (with & without encryption). Higher the better. It is evaluated in
FPGA (RISC-V).

8.3 OS Services

To show how IPC influences the performance of microkernels, we evaluate the performance of
two OS services: file system and network subsystem. The setting is seL4 (using SiFive Freedom on
FPGA) and Zircon (using lowRISC on FPGA), and we use Imbench [45] to evaluate the file system
and network performance.

9We confirmed this with the GME5 community.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2022.

Boosting Inter-Process Communication with Architectural Support 111:27

File System. In microkernels, a file system usually includes two servers, a file system server and
a block device server (e.g., in Zircon, the MiniFS and the in-memory ramdisk server). We port a
log-based file system named xv6fs from fscq [26], a formally verified crash-safe file system, to both
Zircon and seL4. A ramdisk device is used as the block device server.

We test the throughput of the file read/write operations. The results are shown in Figure 10(a)
and (b). Zircon uses two-fold copying, and seL4 uses shared memory. We implement seL4-one-
copy version which needs one copying to meet the interfaces (having TOCTTOU issue) and
seL4-two-copy version, which requires two copying and provides higher security guarantee. XPC
optimized systems can achieve zero-copying without TOCTTOU issue. On average, XPC achieves
7.8x/3.8x speedup compared with Zircon/seL4 for read operations, and 13.2x/3.0x speedup for write
operations.

The improvement mainly comes from both faster switch and zero-copying of XPC, especially for
write operations, which will cause many IPCs and data transfers between the file system server
and the block device server.

Network. Microkernel systems usually have two servers for network: one network stack server
(including all network protocols) and one network device server. We use IwIP [5], a network stack
used by Fuchsia (a full-fledged OS using Zircon), as our network stack server. A loopback device
driver, which gets a packet and then sends it to the server, is used as the network device server. We
do not port IwIP to seL4, so we only consider Zircon in this test.

We evaluate the throughput of TCP connection with different buffer sizes. The result is shown
in Figure 10(c). On average, Zircon-XPC is 6x faster than Zircon. For small buffer size, Zircon-XPC
achieves up to 8x speedup, and the number decreases as the buffer size grows. This is because IwIP
buffers the client messages for batching, so increasing buffer size will reduce the numbers of IPC,
which improves the performance of the original Zircon due to its high IPC latency.

1.4

XPC =3
2 12 Baseline EZEa
g 1
o
£ 08
=]
206
E3
2 04
=)
0.2
0
Small Large

Fig. 12. Encryption serverless functions. There are three serverless functions in the chain. The throughput
is normalized and higher the better. It is evaluated in FPGA (RISC-V).

8.4 Applications

To show how XPC improves the performance of real-world applications, we evaluate the perfor-
mance of a database, a web server and a serverless application. In the evaluation, applications
may need one copying (even using relay-segs) to match existing APIs, e.g., POSIX interfaces in
microkernel-based applications. The copying costs are included in all cases.

Sqlite3. Sqlite3 [7] is a widely-used relational database. In this case, we evaluate its throughput on
both seL4 and Zircon. We use the default configuration with journaling enabled, and measure the
throughput with different workloads (YSCB benchmark workloads). Each workload is performed
on a table with 1,000 records. The result is shown in Figure 11(a) and (b). On average, XPC achieves
60% speedup in seL4 and 108% in Zircon.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2022.

111:28 Yubin Xia et al.

2. prepare data,
Client function prr— Server function
Thread
" Binder Pool
1. transact Binder 8. xeall framework | 4. onTransact i
Client framework ith Looper
ith Ii 5. xret Wi Q
with libXPC libXPC

set/clear_xcap ; ; add/remove_x-entry

Linux kernel (Binder driver) |

Fig. 13. XPC for Android Binder. Rectangular boxes denote components in Android; shaded boxes denote
modified parts.

YCSB-A and YCSB-F gain the most improvement because they have a lot of write/update op-
erations which will trigger frequent file access. YSCB-C has minimal improvement since it is a
read-only workload and Sqlite3 has an in-memory cache that can handle the read requests well.

Web Server. In this case, we evaluate the web server throughput on Zircon. Three services are
involved in the web server: an HTTP service ported from lwIP, which accepts a request and then
returns a static HTML file; an AES encryption service that encrypts the network traffic with a
128-bit key; an in-memory file cache service that is used to cache the HTML files in both modes.
The HTTP service is configured with both encryption-enabled mode and encryption-disabled mode.
A client continuously sends HTTP requests to the web server.

The throughput is measured and the result is shown in Figure 11(c). XPC has about 10x speedup
with the encryption and about 12x speedup without encryption. Most of the benefit comes from
the relay segment. For a multi-service server (i.e., three services in the web server), a message will
be transferred multiple times. Using relay segment can efficiently reduce the times of memory
copying in these IPC.

Serverless Functions. To evaluate the communication performance in real-world serverless ap-
plications, we port an online encryption application to Linux. The online encryption application
includes three functions: the front-end function, the data provisioning function, and the encryption
function. The front-end function will receive a request from a client, which is a file name. The data
provisioning function will fetch a file according to the file name. Last, the encryption function will
process the file data and return it to the client.

We compare the performance in Linux with and without XPC. The throughput is measured, and
the result is shown in Figure 12. The optimized has about 15.7x speedup when the file is small and
7.5x speedup when the file is large. This is because the increased computation costs of a large file
are much more than the costs of communication.

8.5 Case Study: IPC in Android

We use the widely-used IPC framework in Android, Binder, as a case study to show how XPC
can achieve efficient communication in real-world scenarios. Android Binder comprises several
layers, including the Linux Binder driver, the Android Binder framework (i.e., C++ middleware),
and the API (e.g., Android interface definition language). Our modification focuses on the driver
and framework but keeps the API (almost) unmodified. This study explains how XPC optimizes
Binder’s domain switching and message passing.

8.5.1 Binder Transaction for Domain Switching. The Binder framework provides a set of interfaces,
named Binder transaction, to establish an IPC channel, configure IPC, and process IPC operations.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2022.

Boosting Inter-Process Communication with Architectural Support 111:29

i i i i i 1000 " i i
900 F ! e .
800 & Binder —— ~ Binder ——
200l Binder-XPC —*— 100 Binder-XPC —*—
— 600 2 10 Ashmem-XPC —e—
—~ [
g
= 500 = £
o /'3’ ©
E 400 | £ 1E
& 300 &=
200 0.1
100 0.1 :
2k 2k gﬁ 8K 10K 12K 14K 16K 4K 16K 64K 256K 1M 4M 32M
Argument Size (bytes) Argument Size (bytes)
(a) Binder using buffer. (b) Binder using ashmem.

Fig. 14. Android Binder evaluation (RISC-V). Figure (a) and (b) show the remote method invocation
latency between the windows manager and surface compositor with different argument sizes. Lower the
better.

Table 9. Android Binder evaluation (ARM). The results are the latency of transferring messages with
different sizes. Binder-XPC is the optimized implementation, and it only saves and restores minimal registers.
Binder-XPC-full will save and restore all general-purpose registers for security. Binder-buffer and Binder-
ashmem are two baseline systems, using transaction buffer and ashmem (zero-copying), respectively. It is
evaluated in Gemb (setting in §8.1), and results are represented using ticks.

Systems 0B 4KB 16KB

Binder-XPC (kticks) 220.8 1,133.1 3,554.9
Binder-XPC-full (kticks) 777.5 1,1449 3,489.4
Binder-buffer (kticks) 27,682.2 42,470.7 69,445.2
Binder-ashmem (kticks) \ 47,5249 52,075.6

We first explain five interfaces for domain switching used on the case study and then explain how
to optimize these facilities’ implementation using XPC.

First, a server process should register a service through BinderaddService (@) interface, and
implement a handler function with the onTransact (@) interface. Second, it registers a set of
working threads through an ioct! command, BC_REGISTER_LOOP (@)). Third, the client establishes
a communication connection with a server through API, getService (@). Last, the client performs
transact (@) to invoke the services in the server side.

The optimized Binder transaction is shown in Figure 13. First, we extend the Linux kernel (Binder
driver) to manage the xcall-cap capabilities, x-entry-table, and other XPC states. When a server
process registers a service through addService, the modified framework will issue an ioct/ command
to the Linux Binder driver to add an x-entry. The registered handler function (i.e., onTransact())
is wrapped with a wrapper, which is writeen in the entry address of the x-entry. The wrapper
will invoke the onTransact() handler and return the results using xret. The server will also register
worker processes using BC_REGISTER_LOOP, in which the kernel will assign different x-entry for
each worker thread, and maintains these worker threads in a thread pool. Each x-entry is assigned
with one credit.

From the perspective of the client process, the framework will issue an ioct! command to acquire
the xcall-cap capabilities when the client asks for a service through getService APL Besides, the
kernel will pick an x-entry for the service from its thread pool to the client. The modified framework
will use xcall to invoke a remote service and use the relay segment to implement Parcels for data
transfer (explained in §6.2).

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2022.

111:30 Yubin Xia et al.

Results: We evaluate Binder by simulating the communication between two services in Android,
the window manager and a surface compositor. The surface compositor will transfer the surface
data to the windows manager through Binder, and then the windows manager needs to read the
surface data and draw the associated surface.

We consider two Binder facilities, passing data through Binder buffer and passing data through
ashmem (see §8.5.2), and evaluate the latency for the communication. The result is shown in
Figure 14(a), where the latency time includes the data preparation (client), the remote method
invocation and data transfer (framework), handling the surface content (server), and the reply
(framework). The latency of Android Binder is 378.4us for 2KB data and 878.0us for 16KB data (aver-
age value of 100 times run), while the Binder-XPC achieves 8.2us for 2KB data (46.2x improvement)
and 29.0us for 16KB data (30.2x improvement). Notably, the buffer size is restricted in Android (e.g.,
less than 1MB). Optimized by XPC, domain switchings and memory copying are eliminated. The
results are similar in the ARM, as shown in Table 9. XPC reduces the latency of Binder by 35x-123x
for OB message and about 19x for 16KB message.

8.5.2 Anonymous Shared Memory for Message Passing. Android Binder utilizes the anonymous
shared memory (ashmem) subsystem in Linux to provide a file-based shared memory interface
to userspace. It works like anonymous memory (i.e., ashmem does not have backed files), but a
process can share the mappings with another process by sharing the file descriptor. In Android
Binder, processes can share file descriptors of an ashmem through the Binder driver.

Since ashmem is one of the shared memory, applications can utilize it to achieve zero-copying
message transfer. However, one-copying ashmem (e.g., the callee copies the data from ashmem to
its private memory) is mostly used to avoid TOCTTOU issues. In the case study, we compare XPC
with both methods. We optimize the ashmem with the relay segment.

e ashmem allocation: The framework allocates an ashmem by allocating a relay segment
from Binder driver.

e ashmem map: The map operation will allocate virtual addresses for the segment and set
the seg-reg register.

e ashmem transfer: The ashmem can be transferred among processes by passing the seg-reg
register in the framework during xcall.

e ashmem usage: The client and server can safely use the ashmem without TOCTTOU issues
as the ownership will be transferred. Furthermore, they can build complex data structures
directly on the memory with several helper functions provided by XPC’s library.

Using the relay segment, the framework can avoid copying, syscall operations, and marshal-
ing/unmarshaling costs; therefore, it achieves better performance. However, one limitation is that,
in the prototype implementation, there is only one active relay segment! at a time. Thus we rely on
the page fault (implicitly)/swapseg (explicitly) to switch the active relay segment when applications
need access to several ashmems at the same time.

Results: The result of using ashmem for data transfer in Binder is shown in Figure 14(b). The
latency of Android Binder is 0.5ms-233.2ms for 4KB-32MB surface data size, while the Binder-XPC
achieves 9.3us for 4KB data (54.2x improvement) and 81.8ms for 32MB data (2.8x improvement).
Ashmem-XPC represents the results when we only optimized ashmem using the relay segment
(no xcall support). As shown in the figure, the ashmem-XPC achieves 0.3ms for 4KB data (1.6x
improvement) and 82.0ms for 32MB data (2.8x improvement). The baseline will use the one-copying
ashmem. The improvement mainly comes from the secure zero-copying message transfer. We

101t is possible to extend to more active relay segments, and the OS should ensure they have different virtual memory
regions.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2022.

Boosting Inter-Process Communication with Architectural Support 111:31

Table 10. Hardware resource costs in FPGA.

Resource Freedom XPC Cost
LUT 44643 45531 1.99%
LUTRAM 3370 3370 0.00%
SRL 636 636 0.00%
FF 30379 31386 3.31%
RAMB36 3 3 0.00%
RAMB18 48 48 0.00%
DSP48 Blocks 15 16 6.67%

also confirm the results on ARM, as shown in Table 9. The Binder-ashmem uses the zero-copying
ashmem, but still has 14x higher latency.

Summary: Overall, XPC can effectively optimize the performance of Android Binder and ashmem.
Currently, the prototype only optimizes synchronous IPC in Binder (asynchronous IPC usage like
death notification is not supported yet). As we do not support XPC in RISC-V Linux, we leverage
machine mode in RISC-V to trap and handle any exception between xcall and xret (rare in the
experiments).

8.6 Hardware Costs

As we use Vivado [8] tool to generate the hardware, we can gain the resource utilization report
in the FPGA. The hardware costs report is shown in Table 10 (without engine cache). The overall
hardware costs are small (1.99% in LUT and 0.00% in RAM). By further investigating the resource
costs, we found that CSRFile in XPC uses more 372 LUTs and 273 FFs than baseline (to handle the 7
new registers), while XPC engine uses 422 LUTs, 462 FFs, and 1 DSP48 blocks.

The utilization certainly could be further optimized, like using Verilog instead of Chisel in
RocketChip. The low hardware costs make XPC possible to be applied in existing processors.

9 DISCUSSION
9.1 Security Analysis

XPC Authentication and Identification. A caller cannot direct issue xcall ID to invoke an
XPC without the corresponding xcall-cap. It may request the xcall-cap from a server with the
corresponding grant-cap, just like the name server [28] in L4. A callee can identify a caller by its
xcall-cap-reg, which will be put into a general purpose register by XPC engine and cannot be forged.

Defending TOCTTOU Attacks. TOCTTOU attacks happen due to the lack of ownership transfer
of the messages. In XPC, a message is passed by a relay-seg, which is owned by only one thread at
a time. Meanwhile, the kernel will ensure that a relay-seg will not overlap with any other mapped
memory range. Thus, each owner can exclusively access the data in a relay-seg, which can inherently
defend against TOCTTOU attacks.

Fault Isolation. During an xcall, a callee crash will not affect the execution of the caller and vice
versa. If the callee hangs for a long time, the caller thread may also hang. XPC can offer a timeout
mechanism to enforce the control flow to return to the caller in this case. However, in practice the
threshold of timeout is usually set to 0 or infinite [29], which makes the timeout mechanism less
useful.

Message security without marshaling. Since the pointers/addresses in a relay-seg are the same
in caller and callee’s address space, XPC library provides a simplified way to check pointer’s validity

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2022.

111:32 Yubin Xia et al.

and does not require marshaling and unmarshaling. However, the feature may not suit complicated
data structures, and developers should carefully use it in such cases.

Defending DoS Attacks. A malicious process may try to issue DoS attacks by consuming far more
hardware resources than it needs. One possible attack is to create a lot of relay-seg which requires
many continuous physical memory ranges, which may trigger external fragmentation. In XPC, a
relay-seg will use the process’s private address space (i.e., untyped memory as seL4 [34]), which
will not affect other processes or the kernel. Another case is that, a malicious caller may exhaust
the callee’s available contexts by excessively calling the callee. We can use credit systems [3, 19]
to overcome the issue. The callee will first check whether the caller has enough credits before
assigning an XPC context to it.

Timing Attacks. XPC Engine Cache may be the source of timing attacks, but is very hard since
the number of entries is small (only one in the paper). Moreover, the issue can be mitigated by
adding tags in the Engine Cache like tagged-TLB. As each Cache entry is private for a thread (with
tags), the timing attacks could be mitigated.

9.2 Scheduling Properties

A common concern of kernel-bypassed IPC is that it may violate scheduling properties like fairness
and real-time scheduling. Here, we explain how these issues are addressed in XPC.

First, XPC is not a fully scheduler-bypassed IPC design; instead, only the data-plane of IPC
invocation will bypass the scheduler. The OS kernel is still responsible for the control plane of
an IPC invocation, and the hardware extension is proposed to boost the data plane. In this way,
the OS kernel can carefully select channels (usually pairs of client and server threads) that can
communicate directly through XPC. The same approach to decoupling a system into a control
plane and data plane (which is kernel-bypassed) is also used in high-performant applications like
DPDK and SPDK and other IPC designs like LVDs [49] and SkyBridge [46]. Commercial hardware,
e.g., Intel, also released its prototype of an optimized IPC design based on user-level interrupts [15],
which will bypass the kernel and the scheduler during communication.

Besides, the proposed generic design, the split thread model, helps the kernel understand how it
should work with XPC. The model abstracts each thread with two sets of states: the scheduling state
and the runtime state. During the IPC, only the runtime state is changed by the XPC hardware, while
the scheduling context (includes all the information for scheduling) is reserved. That means the the
client thread should donate its time slices to invoke the server thread (called time-slice donation). Time-
slice donation is already used in many microkernels like Mach 3.0 [31], LRPC [21], Fiasco.OC [12],
Nova [53], and seL4 [34]. XPC does not introduce anything others besides time-slice donation to
the scheduling.

Last, the design of XPC is orthogonal to scheduling properties like fairness and real-time sched-
uling. For scheduling fairness, threads are allocated with time slices and scheduled normally using
OS’s policies, e.g., a client thread will still be scheduled even it xcalls to a server thread when it
uses up its time slices. The main concern for methods like “direct switch” (terms used in L4/sel4
microkernel) for real-time scheduling has been addressed by priorities [29]. XPC relies on the
OS kernel for the control plane. Therefore, the OS kernel can reject to use xcall and xret for IPC
channels that will violate the real-time requirements. As a result, XPC can have the same fairness
and real-time scheduling properties as prior OSes.

Prior works [43] explore the limitations of the IPC system based on time-slice donation. For
example, scheduling context [43] illustrates that time-slice donation is insufficient to provide strong
spatial isolation in seL4 and propose scheduling context donation during IPC. The extension could be

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2022.

Boosting Inter-Process Communication with Architectural Support 111:33

easy to achieve in XPC with our split thread model. Specifically, the OS can manage the scheduling
context in a thread’s scheduling state, which will be inherently donated to its callee thread.

9.3 Relay Segment Support

Some communication models used by applications, e.g., scatter-gather, require transferring a batch
of messages. This can be achieved by using seglist to support multiple relay segments (§5.4). For
example, to support the scatter-gather model, a caller process can split the data into multiple relay
segments, and these relay segments can be saved into the seglist. These relay segments can be
passed to different callees (for scatter). Similarly, a callee process can gather segments from multiple
callers. Two memory copyings may be necessary during data splitting and merging, which will
not be worse than existing methods (e.g., shared memory with two copyings). Besides, the new
instruction, swapseg is proposed to switch relay segments between seg-list and seg-reg, which has
small costs (i.e., 11 cycles in the best case).

Moreover, we want to clarify that the relay segment does not aim to replace existing methods like
shared memory. Users are free to use relay segments with other methods if the relay segment does
not bring significant benefits in some cases. We believe that the relay segment gives applications a
new option to transfer messages with low latency.

10 CONCLUSION

This paper presents XPC, a hardware/software co-design for fast and secure IPC. The extension
is compatible with traditional address space isolation and can be easily integrated with existing
OS kernels. Our evaluation shows that XPC can significantly improve the performance of various
workloads of modern microkernels and Android Binder.

ACKNOWLEDGMENTS

The corresponding author of the paper is Haibo Chen. This work is supported by the National
Natural Science Foundation of China (No. 62132014, 61925206, U19A2060), and the Program of
Shanghai Academic/Technology Research Leader (No.19XD1401700).

REFERENCES

[1] 2018. Arm System Modeling Research Enablement Kit. https://developer.arm.com/research/research-enablement/
system-modeling. Referenced November 2018.

[2] 2018. Fuchsia. https://fuchsia.googlesource.com/zircon. Referenced November 2018.

[3] 2018. An Introduction to the Intel QuickPath Interconnect. https://www.intel.de/content/dam/doc/white-paper/quick-
path-interconnect-introduction-paper.pdf. Referenced November 2018.

[4] 2018. lowRISC. https://www.lowrisc.org/. Referenced November 2018.

[5] 2018. IwIP. https://savannah.nongnu.org/projects/lwip/. Referenced May 2018.

[6] 2018. seL4 Benchmark. https://sel4.systems/About/Performance. Referenced November 2018.

[7] 2018. SQLite. https://www.sqlite.org/index.html. Referenced May 2018.

[8] 2018. Vivado Design Suite. https://www.xilinx.com/products/design-tools/vivado.html. Referenced August 2018.

[9] 2019. Anonymous shared memory (ashmem) subsystem [LWN.net]. https://lwn.net/Articles/452035/.

10] 2019. LKML: Dianne Hackborn: Re: [PATCH 1/6] staging: android: binder: Remove some funny usage. https:

//lkml.org/lkml/2009/6/25/3.

[11] 2021. CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition (4.5). https://cwe.mitre.org/data/definitions/
367.html. Referenced Sep. 2021.

[12] 2021. The Fiasco microkernel - Overview. https://os.inf.tu-dresden.de/fiasco/. Referenced Oct. 2021.

[13] 2021. Message Notifications, Barrelfish Technical Note 9. http://www.barrelfish.org/publications/TN-009-Notifications.
pdf. Referenced Sep. 2021.

[14] 2021. SiFive. https://www.sifive.com/. Referenced November 2018.

[15] 2021. User Interrupts: A faster way to signal. https://linuxplumbersconf.org/event/11/contributions/985/attachments/
756/1417/User_Interrupts LPC_2021.pdf. Referenced Oct. 2021.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2022.

https://developer.arm.com/research/research-enablement/system-modeling
https://developer.arm.com/research/research-enablement/system-modeling
https://fuchsia.googlesource.com/zircon
https://www.intel.de/content/dam/doc/white-paper/quick-path-interconnect-introduction-paper.pdf
https://www.intel.de/content/dam/doc/white-paper/quick-path-interconnect-introduction-paper.pdf
https://www.lowrisc.org/
https://savannah.nongnu.org/projects/lwip/
https://sel4.systems/About/Performance
https://www.sqlite.org/index.html
https://www.xilinx.com/products/design-tools/vivado.html
https://lwn.net/Articles/452035/
https://lkml.org/lkml/2009/6/25/3
https://lkml.org/lkml/2009/6/25/3
https://cwe.mitre.org/data/definitions/367.html
https://cwe.mitre.org/data/definitions/367.html
https://os.inf.tu-dresden.de/fiasco/
http://www.barrelfish.org/publications/TN-009-Notifications.pdf
http://www.barrelfish.org/publications/TN-009-Notifications.pdf
https://www.sifive.com/
https://linuxplumbersconf.org/event/11/contributions/985/attachments/756/1417/User_Interrupts_LPC_2021.pdf
https://linuxplumbersconf.org/event/11/contributions/985/attachments/756/1417/User_Interrupts_LPC_2021.pdf

111:34 Yubin Xia et al.

[16] 2022. seL4 Dynamic Libraries: IPC. https://docs.sel4.systems/Tutorials/dynamic-2.html. Referenced Mar. 2022.

[17] Nadav Amit, Amy Tai, and Michael Wei. 2020. Don’t Shoot down TLB Shootdowns!. In Proceedings of the Fifteenth
European Conference on Computer Systems (Heraklion, Greece) (EuroSys "20). Association for Computing Machinery,
New York, NY, USA, Article 35, 14 pages. https://doi.org/10.1145/3342195.3387518

[18] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Biancolin, Christopher Celio, Henry Cook,
Daniel Dabbelt, John Hauser, Adam Izraelevitz, et al. 2016. The rocket chip generator. EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2016-17 (2016).

[19] Nils Asmussen, Marcus Vélp, Benedikt Nothen, Hermann Hartig, and Gerhard Fettweis. 2016. M3: A
Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores. In ASPLOS (Atlanta, Georgia, USA). ACM,
New York, NY, USA.

[20] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca Isaacs, Simon Peter, Timothy Roscoe,
Adrian Schiipbach, and Akhilesh Singhania. 2009. The multikernel: a new OS architecture for scalable multicore
systems. In Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles.

[21] Brian N Bershad, Thomas E Anderson, Edward D Lazowska, and Henry M Levy. 1990. Lightweight remote procedure
call. ACM Transactions on Computer Systems (TOCS) (1990).

[22] Brian N Bershad, Thomas E Anderson, Edward D Lazowska, and Henry M Levy. 1991. User-level interprocess
communication for shared memory multiprocessors. ACM Transactions on Computer Systems (TOCS) 9, 2 (1991),
175-198.

[23] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness,

Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish,

Mark D. Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Comput. Archit. News (2011).

Nicholas P Carter, Stephen W Keckler, and William J Dally. 1994. Hardware support for fast capability-based addressing.

In ACM SIGPLAN Notices. ACM.

[25] Jeffrey S Chase, Henry M Levy, Michael J Feeley, and Edward D Lazowska. 1994. Sharing and protection in a

single-address-space operating system. ACM Transactions on Computer Systems (TOCS) 12, 4 (1994).

Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M Frans Kaashoek, and Nickolai Zeldovich. 2015. Using

Crash Hoare logic for certifying the FSCQ file system. In SOSP.

Raymond K Clark, E Douglas Jensen, and Franklin D Reynolds. 1992. An architectural overview of the Alpha real-time

distributed kernel. In Proceedings of the USENIX Workshop on Microkernels and other Kernel Architectures.

Francis M David, Ellick Chan, Jeffrey C Carlyle, and Roy H Campbell. 2008. CuriOS: Improving Reliability through

Operating System Structure.. In OSDL

Kevin Elphinstone and Gernot Heiser. 2013. From L3 to seL4 what have we learnt in 20 years of L4 microkernels?. In

SOSP.

[30] D.R.Engler, M. F. Kaashoek, and J. O’Toole, Jr. 1995. Exokernel: An Operating System Architecture for Application-level

Resource Management. In SOSP’95 (Copper Mountain, Colorado, USA). ACM, New York, NY, USA.

Bryan Ford and Jay Lepreau. 1994. Evolving Mach 3.0 to A Migrating Thread Model. In USENIX Winter.

Benjamin Gamsa, Orran Krieger, Jonathan Appavoo, and Michael Stumm. 1999. Tornado: Maximizing locality and

concurrency in a shared memory multiprocessor operating system. In OSDI, Vol. 99. 87-100.

[33] Hermann Hértig, Michael Hohmuth, Jochen Liedtke, Jean Wolter, and Sebastian Schénberg. 1997. The performance of
p-kernel-based systems. In ACM SIGOPS Operating Systems Review, Vol. 31. ACM.

[34] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin, Dhammika Elkaduwe,
Kai Engelhardt, Rafal Kolanski, Michael Norrish, et al. 2009. seL4: Formal verification of an OS kernel. In Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles.

[35] Eric J Koldinger, Jeffrey S Chase, and Susan] Eggers. 1992. Architecture support for single address space operating

systems. Vol. 27. ACM.

Sanghoon Lee, Devesh Tiwari, Yan Solihin, and James Tuck. 2011. HAQu: Hardware-accelerated queueing for fine-

grained threading on a chip multiprocessor. In HPCA.

Henry M Levy. 1984. Capability-based computer systems. Digital Press.

Wenhao Li, Yubin Xia, Haibo Chen, Binyu Zang, and Haibing Guan. 2015. Reducing World Switches in Virtualized

Environment with Flexible Cross-world Calls. In ISCA.

Jochen Liedtke. 1993. Improving IPC by kernel design. ACM SIGOPS operating systems review (1993).

Jochen Liedtke. 1993. A persistent system in real use-experiences of the first 13 years. In Object Orientation in Operating

Systems, 1993., Proceedings of the Third International Workshop on. IEEE.

Jochen Liedtke. 1995. On micro-kernel construction. Vol. 29. ACM.

Jochen Liedtke, Kevin Elphinstone, Sebastian Schonberg, Hermann Hartig, Gernot Heiser, Nayeem Islam, and Trent

Jaeger. 1997. Achieved IPC performance (still the foundation for extensibility). In Operating Systems, 1997., The Sixth

Workshop on Hot Topics in. IEEE.

[24

—

[26

—

[27

—

[28

—

[29

—

[31
[32

—

[36

—

[37
[38

[ter i

[39
[40

[t

[41
[42

=

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2022.

https://docs.sel4.systems/Tutorials/dynamic-2.html
https://doi.org/10.1145/3342195.3387518

Boosting Inter-Process Communication with Architectural Support 111:35

[43]

[44]

[45]
[46]
[47]

[48]

[49

—

[50]

[51]

[52]
[53]

[54]
[55]
[56]

[57]

[58]

[59]

[60]

[61]

Anna Lyons, Kent McLeod, Hesham Almatary, and Gernot Heiser. 2018. Scheduling-context capabilities: a principled,
light-weight operating-system mechanism for managing time. In Proceedings of the Thirteenth EuroSys Conference.
ACM.

Alex Markuze, Igor Smolyar, Adam Morrison, and Dan Tsafrir. 2018. DAMN: Overhead-Free IOMMU Protection for
Networking. In Proceedings of the Twenty-Third International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM.

Larry W McVoy, Carl Staelin, et al. 1996. lmbench: Portable Tools for Performance Analysis.. In USENIX annual
technical conference. San Diego, CA, USA, 279-294.

Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, and Haibo Chen. 2019. SkyBridge: Fast and Secure Inter-Process
Communication for Microkernels. In Proceedings of the Fourteenth EuroSys Conference 2019. ACM.

Changwoo Min, Woonhak Kang, Mohan Kumar, Sanidhya Kashyap, Steffen Maass, Heeseung Jo, and Taesoo Kim. 2018.
Solros: a data-centric operating system architecture for heterogeneous computing. In EuroSys. ACM.

Vikram Narayanan, Abhiram Balasubramanian, Charlie Jacobsen, Sarah Spall, Scott Bauer, Michael Quigley, Aftab
Hussain, Abdullah Younis, Junjie Shen, Moinak Bhattacharyya, and Anton Burtsev. 2019. LXDs: Towards Isolation of
Kernel Subsystems. In 2019 USENIX Annual Technical Conference (USENIX ATC 19). USENIX Association, Renton, WA,
269-284. https://www.usenix.org/conference/atc19/presentation/narayanan

Vikram Narayanan, Yongzhe Huang, Gang Tan, Trent Jaeger, and Anton Burtsev. 2020. Lightweight Kernel Isolation
with Virtualization and VM Functions. In Proceedings of the 16th ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments (Lausanne, Switzerland) (VEE °20). Association for Computing Machinery, New York,
NY, USA, 157-171. https://doi.org/10.1145/3381052.3381328

Soyeon Park, Sangho Lee, Wen Xu, HyunGon Moon, and Taesoo Kim. 2019. libmpk: Software Abstraction for
Intel Memory Protection Keys (Intel MPK). In 2019 USENIX Annual Technical Conference (USENLX ATC 19). USENIX
Association, Renton, WA, 241-254. https://www.usenix.org/conference/atc19/presentation/park-soyeon

Jerome H Saltzer. 1974. Protection and the control of information sharing in Multics. Commun. ACM 17, 7 (1974),
388-402.

Jonathan S Shapiro, Jonathan M Smith, and David] Farber. 1999. EROS: a fast capability system. Vol. 33. ACM.

Udo Steinberg and Bernhard Kauer. 2010. NOVA: a microhypervisor-based secure virtualization architecture. In
Proceedings of the 5th European conference on Computer systems.

Dan Tsafrir. 2007. The context-switch overhead inflicted by hardware interrupts (and the enigma of do-nothing loops).
In Proceedings of the 2007 workshop on Experimental computer science. ACM.

Lluis Vilanova, Muli Ben-Yehuda, Nacho Navarro, Yoav Etsion, and Mateo Valero. 2014. CODOM:s: Protecting software
with code-centric memory domains. In ACM SIGARCH Computer Architecture News. IEEE Press.

Lluis Vilanova, Marc Jorda, Nacho Navarro, Yoav Etsion, and Mateo Valero. 2017. Direct Inter-Process Communication
(dIPC): Repurposing the CODOMs Architecture to Accelerate IPC. In EuroSys. ACM.

Andrew Waterman, Yunsup Lee, David A Patterson, and Krste Asanovi. 2014. The RISC-V Instruction Set Manual.
Volume 1: User-Level ISA, Version 2.0. Technical Report. CALIFORNIA UNIV BERKELEY DEPT OF ELECTRICAL
ENGINEERING AND COMPUTER SCIENCES.

Robert NM Watson, Ben Laurie, et al. 2015. Cheri: A hybrid capability-system architecture for scalable software
compartmentalization. In 2015 IEEE Symposium on Security and Privacy (SP). IEEE.

Robert NM Watson, Robert M Norton, Jonathan Woodruff, Simon W Moore, Peter G Neumann, Jonathan Anderson,
David Chisnall, Brooks Davis, Ben Laurie, Michael Roe, et al. 2016. Fast protection-domain crossing in the cheri
capability-system architecture. IEEE Micro (2016).

Emmett Witchel, Josh Cates, and Krste Asanovi¢. 2002. Mondrian Memory Protection. In ASPLOS (San Jose, California).
ACM, New York, NY, USA.

Emmett Witchel, Junghwan Rhee, and Krste Asanovi¢. 2005. Mondrix: Memory Isolation for Linux Using Mondriaan
Memory Protection. In SOSP. ACM.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2022.

https://www.usenix.org/conference/atc19/presentation/narayanan
https://doi.org/10.1145/3381052.3381328
https://www.usenix.org/conference/atc19/presentation/park-soyeon

	Abstract
	1 Introduction
	2 Motivation
	2.1 IPC Performance is Still Critical
	2.2 Microkernel IPC Analysis
	2.3 Monolithic Kernel IPC Analysis
	2.4 Goals

	3 Related Work
	3.1 Optimizations on Domain Switch
	3.2 Optimizations on Message Passing

	4 Design Overview
	5 XPC Hardware Design
	5.1 XPC Engine
	5.2 Concurrent Communication and Credit System
	5.3 Decoupled XPC Instructions
	5.4 Relay Segment

	6 XPC Software Design and Implementation
	6.1 OS Kernel Support
	6.2 User Library Implementation

	7 Hardware Implementation
	8 Evaluation
	8.1 Methodology
	8.2 Microbenchmark
	8.3 OS Services
	8.4 Applications
	8.5 Case Study: IPC in Android
	8.6 Hardware Costs

	9 Discussion
	9.1 Security Analysis
	9.2 Scheduling Properties
	9.3 Relay Segment Support

	10 Conclusion
	Acknowledgments
	References

