On the Precision of Precise Event Based Sampling

Jifei Yi, Benchao Dong, Mingkai Dong, Haibo Chen
Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

ABSTRACT

Many performance studies rely on Intel’s Precise Event Based
Sampling (PEBS) to collect processor events, where precision
is a key for the reliability of analysis. In this paper, we make
a study on the precision of PEBS and show that, while by its
name being precise, PEBS can cause mistakes under shad-
owing, which may make the analysis unreliable. We then
show how to remedy such imprecision by artificially insert-
ing bogus instructions. Evaluation shows that our remedy
leads to more precise event samples and thus more reliable
performance analysis.

KEYWORDS
PEBS, Sampling, Accuracy

ACM Reference Format:

Jifei Yi, Benchao Dong, Mingkai Dong, Haibo Chen. 2020. On the
Precision of Precise Event Based Sampling. In 11th ACM SIGOPS
Asia-Pacific Workshop on Systems (APSys "20), August 24-25, 2020,
Tsukuba, Japan. ACM, New York, NY, USA, 8 pages. https://doi.org/
10.1145/3409963.3410490

1 INTRODUCTION

The complexity of software systems has made it notoriously
hard to diagnose performance problems. To this end, modern
processors provide performance monitoring units (PMU) [8]
to collect hardware-level performance events, such as CPU
cycles, cache misses, and memory accesses, for online or
offline performance analysis.

To strike a good balance between intrusiveness and preci-
sion, PMU widely used sampling for profiling. With a config-
ured event and threshold, PMU triggers an overflow interrupt
after the number of specified event occurrences exceeds the
threshold. Then, the software interrupt handler can take the
chance to record useful information about the context of
the interrupt, which is usually called a sample. Ideally, all

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

APSys °20, August 24-25, 2020, Tsukuba, Japan

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8069-0/20/08. .. $15.00
https://doi.org/10.1145/3409963.3410490

98

overflow
overflow
overflow
overflow
shadow ‘ arm l arm arm arm
Event 1 Event2 | Event 3 | Event 4 Event 5
ffffffffffffffffffffffffffffffffffff time -------------------ieeee e

Figure 1: Event1-Event5 are five same events to be
monitored. Due to the shadow effect, the PMU counter
overflow caused by event 1 will record event 4, while
those generated by events 2—4 will take a sample of
event 5.

monitored events should be sampled with exactly equal prob-
ability. However, PMU sampling is usually imprecise. Due
to hardware limits, there is an inevitable time delay from
the PMU overflow interrupt to the signal handler, which is
called skid. As a result, the software handler might, by mis-
take, sample an instruction following the one that should be
sampled.

To make sampling more accurate and efficient, modern
Intel processors are equipped with Precise Event-Based Sam-
pling (PEBS)! technique. When a PMU counter overflow
occurs, instead of triggering interrupts, the PEBS hardware
is armed. The hardware will then be ready to record the
next monitored event. It will record the event in a software-
configured memory region [14]. System software can then
inspect the samples later.

However, PEBS is not a silver bullet. Our study shows that
it suffers from the shadow effect — a time delay between the
PMU counter overflow and the arming of the PEBS hardware,
during which any event? that occurs cannot be captured.
Figure 1 illustrates this problem. Assuming that we have five
consecutive events if a PMU counter overflow is generated
when the first event occurs, the shadow hides event2 and
event3. So the PEBS hardware will record event4. For the
same reason, the PMU counter overflows generated by events
2-4 will finally take the sample of event 5.

No previous work has specifically studied how the shadow
effect affect PEBS. In this paper, we systematically stud-
ied PEBS to better understand the precision of PEBS. With
carefully-designed experiments, we demonstrate that the
shadow effect can introduce significant biases in sampling

! Also called Processor Event-Based Sampling in some versions of Intel
documents.

2An event in this paper indicates an instruction that triggers an increase in
the PMU counter of the monitored performance event.

https://doi.org/10.1145/3409963.3410490
https://doi.org/10.1145/3409963.3410490
https://doi.org/10.1145/3409963.3410490

APSys 20, August 24-25, 2020, Tsukuba, Japan

results under some circumstances. After analyzing the phe-
nomenon, we propose the sampling bias rule of PEBS: with a
reasonable sampling period, an event has a higher probability
of being sampled when further away from the previous adja-
cent event. This probability reaches its maximum after the
distance is greater than the shadow’s length and no longer in-
creases with the distance. We then further propose a remedy
method to the shadow effect problem by simply inserting
nop instructions at the appropriate positions for some per-
formance events. Evaluation shows that our remedy can
effectively eliminate the shadow effect and provide accurate
and precise sampling for performance tuning.
In summary, the contributions of this paper include:

o A study uncovering the problem of PEBS that leads to
bias sampling results (§2);

e An analysis that uncovers the reason for the occur-
rence of PEBS bias and under what conditions it may
occur (§3);

e A remedy to alleviate this problem over many per-
formance events (§4) with evaluation to illustrate the
effectiveness and overhead (§5).

2 BACKGROUND AND MOTIVATION
2.1 PMU and PEBS

PEBS is capable of recording more information than conven-
tional PMU sampling, including the instruction pointer (IP)
of each sample, the value in general registers, and so on. For
the memory read and write events, it can also record the
destination address of the memory accesses.

Sampling technology is widely used in mainstream perfor-
mance tools, including perf [1], Oprofile [4], Intel VTune [9],
etc. There is also a lot of work based on conventional PMU
sampling or PEBS [2, 7, 13, 17]. Sampler [13] utilizes the
memory access samples obtained by PEBS to detect memory
errors.

Unfortunately, neither conventional PMU sampling nor
PEBS is precise [15]. According to Chen et al. [3], Levinthal [10],
and Nowak et al. [11], the imprecision comes from three
sources: the synchronization of the monitored program with
the sampling period, and the aforementioned skid and the
shadow effect. Nowak et al. [11] uses PEBS to do the anal-
ysis of basic blocks. They do not need the instruction level
precision. PEBS is able to get more accurate results than
conventional PMU sampling for basic block analysis. Xu et
al. [16] solved the inaccurate problem of conventional PMU
sampling but did not study the problem of PEBS because
the results of PEBS sampling is unpredictable and difficult
to reason.

99

J. Yi, B. Dong, M. Dong, H. Chen

while (offset not reach the end) {
1fence();

read8bytes(basetoffset); // R1
read8bytes(baset+offset+8); // R2
read8bytes(base+offset+16); // R3
read8bytes(base+toffset+24); // R4

offset += 32;

Snippet 1: Pseudo code of mem_loads main loop

2.2 Perf

Perf is a performance analyzing tool in Linux from kernel
v2.6.31 [6]. It provides many commands to profile from a
simple program like hello world to the entire system, in-
cluding the kernel code. It supports performance counters,
tracepoints, and dynamic probes [5].

We can use utilities provided by perf to easily count and
sample specific performance events to analyze program per-
formance and locate the performance bottlenecks. All “pre-
cise events” in perf are sampled with the PEBS hardware.

2.3 Imprecision of PEBS Sampling Results

PEBS supports various events, including retired memory
instructions, cache hit or miss (L1, L2, and L3), branch in-
structions, retired instructions, etc [8].

However, PEBS is not always accurate. We demon-
strate the accuracy issue of PEBS by testing the
mem_inst_retired.all_loads event with the code
shown in Snippet 1. In the test, we mmap a 1GB file in tmpfs
and read the mapped area in a loop with a granularity of 8
bytes. Within each loop round, we use an 1fence instruction
to ensure that all reads in the previous round have finished,
and then we read the next four 8-byte data. To prevent
irrelevant memory read instructions from affecting the
sampling results, we store the unrelated variables in registers
to ensure that only the four memory read instructions inside
the loop can trigger mem_inst_retired.all_loads events.

We execute the code and record samples of the
mem_inst_retired.all_loads event using perf with PEBS
enabled. We distinguish the four memory reads by inspecting
the IP in the samples. To avoid the influence of a particular
sampling period on the results, we conduct the test three
times, with three prime numbers, 10007, 2347, 991, as the sam-
pling period, respectively. Taking the sampling period 10007
as an example, accessing 1GB memory at 8-byte granularity
should yield a total of about 2%°/8/10007 = 13412 samples.
With a precise sampling, the four instructions should have a
similar probability to be sampled, i.e., about 13412/4 = 3353
samples per instruction. However, the results in Figure 2
show that all samples turn out to be the first read instruction

On the Precision of Precise Event Based Sampling

2 100% }/3" ; };k w7 R1

(0]

i f g gmo

i p— v | / mm R4

o / /

S ol 7 7

* 0% /0 [O] /0 0 0 0O 0 O
’ 10007 2347 991

Sampling Period

Figure 2: PEBS sampling results for the code in Snip-
pet 1. The height of the bar represents the percentage
of the instruction with the sampling period on the x-
axis. The number above the bar is the absolute number
of samples for this instruction. Different colors repre-
sent the results of different instructions. Regardless
of the sampling period, all samples are focused on in-
struction R1, and no samples fall on R2, R3, or R4.

(R1), and the remaining three read instructions are com-
pletely uncaught. Since the total number of samples is cor-
rect, the extremely biased distribution suggests that samples
which should fall on R2-R4 end up on R1 instead. The other
two sampling periods present similar results.

3 DIVING INTO THE SHADOW

As the shadow effect, the time delay from the PMU counter
overflow to the arming of the PEBS hardware, shades any
event in between, it is easy to put the blame on the shadow
effect for the abnormality in Figure 2. However, no one has
ever studied the issue in depth and tried to explain how
the shadow effect affects. In the section, we dive into the
shadow effect and look for a general rule that can explain
the imprecision of PEBS.

Since the shadow is timing-related, we first measure the
number of cycles for 1fence and the 4 read instructions in
Snippet 1 using rdtsc [12]. The instruction 1fence takes ap-
proximately 12-14 cycles to complete. The read instructions
are so fast that rdtsc can barely measure their execution
time, except for a small number of R1, which are slower due
to cache misses.

We then try to understand how the shadow effect leads to
the abnormality and show our explanation in Figure 3. For
brevity, we denote the length of the shadow as S during the
explanation. Our basic assumption is that S is longer than the
time of 3 fast read instructions and shorter than the execu-
tion time of 1fence. As a result, the PMU counter overflow
generated by whichever read instruction ends up arming the
PEBS hardware during the execution of 1fence and subse-
quently sampling the next event, i.e., R1. It is also reasonable
if S is longer than the execution time of the 1fence instruc-
tion. That is, the overflow generated by a read instruction

100

APSys 20, August 24-25, 2020, Tsukuba, Japan

3 sarr!ple
point

S l ,,i,::l:ff -

Ifence

overflow [

lfence R1[R2|R3

R1‘R2

Figure 3: Whenever the PMU counter overflow is gen-
erated, it ends up arming the PEBS hardware during
the execution of the 1fence instruction and eventually
records R1.

g 60%1 o 71 R1
o 25Kk == R2
& 40% // v 52k ¢y R3
4
%U}z ¢3k ? /33F R4
€ 20% / /11k10k10k / 21k 23K
[7p]
E-3
0% -

10007

2347
Sampling Period
Figure 4: After removing the lfence instruction, re-
gardless of the sampling period, the proportion of R1
is always significantly higher than the other three in-
structions.

991

may span multiple 1fence instructions before arming the
PEBS hardware. However, our following experiments in §5.2
show that it’s not the latter case.

Since the extremely biased distribution is caused by the
relatively slow 1fence instruction, we remove the 1fence
instruction in Snippet 1 and repeat the experiment to see
whether the shadow effect vanishes.

To our surprise, the results in Figure 4 show that the dis-
tribution is still not fair enough. Regardless of the sampling
period, the proportion of R1 samples (45%-54%) is much
higher than that of the other three instructions (all less than
22%). As there is no slow instruction like 1fence, why are
the sampling results still biased?

The answer turns out to be cache misses. Since the four in-
structions are accessing 32-byte-aligned contiguous memory,
only the first instruction (R1) may cause a cache miss, which
will take more time to read the data from the main mem-
ory. The next three read instructions (R2-R4) are served by
the cache directly. On cache hits, the probability of the four
instructions being sampled is theoretically equal. However,
since R1 may be prolonged due to cache misses, the PMU
counter overflows generated sometime before R1 will even-
tually sample R1. Thus, R1 has a higher probability of being
sampled than the other three instructions. Figure 5 demon-
strates the scenario. The first four black arrows are all able
to sample correctly, but all the blue arrows will eventually

APSys 20, August 24-25, 2020, Tsukuba, Japan

sample

S [l l BEREERILL
.|R4|R1|R2|R3|R4 |R1|R2|R3|R4 R1 (cache miss) R2|R3]| ...
ffffffffffffffffffffffffffffffffffffff time -------------- e

Figure 5: Due to the shadow effect, PMU counter over-
flows generated some time before the cache miss (the
blue arrows) end up recording the cache miss instruc-
tion.

for (i = 0; i < 1<<27; i++) { // Bri
if (i % 2 ==0) // Br2
nop();
/* do something time-consuming */
if (i % 3 == 0) // Br3
nop();
3

Snippet 2: Code of branch instructions test

sample R1, which makes R1 has a higher sample percentage
than others.

According to these observations, we summarize the sam-
pling bias rule of PEBS as below. With a reasonable sam-
pling period, an event has a higher probability of being
sampled when it is further away from the previous ad-
jacent event. This probability reaches its maximum after
the distance is greater than the length of the shadow and no
longer increases with the distance.

We then conduct similar experiments on other PEBS per-
formance events to check whether the bias also exists and
whether the rule applies.

The performance event
br_inst_retired.all_branches_pebs tracks all re-
tired branch instructions [8]. We construct a piece of
code (in Snippet 2) that loops 128M times. Three branch
instructions are executed in each loop round, including
a loop condition branch (indicated as Br1) and two more
branch instructions (Br2 and Br3). To validate the sampling
rule we observed, we add some time-consuming code (50
nops in the experiment) between Br2 and Br3.

Again, all three branch instructions should be sampled
similarly with a precise sampling mechanism. But the results
in Figure 6 show that almost all samples are Br3, which
has the furthest distance to its previous branching event,
regardless of the sampling period.

All the previous performance events have the same char-
acteristic of fast execution. The previous analysis shows that
the biased distribution in Figure 4 is caused by cache misses.

101

J. Yi, B. Dong, M. Dong, H. Chen

2k k

£ 100% 7w Brl yes v i
(O]
5 75%/ Br
o X X Br3
1]
2 50%-
£
& 25%
* 0% 12 248 0 0 0 0

° 10007 2347 991

Sampling Period
Figure 6: Regardless of the sampling period, all sam-
ples fall on Br3. Theoretically, all three instructions
should have similar numbers of samples.

So we construct multiple consecutive cache misses to test
whether the same problem occurs again.

There are many PEBS performance events related
to cache. We select the L3 cache miss event called
mem_load_retired.13_miss, and construct four consecu-
tive L3 cache miss instructions as the code in Snippet 3 shows.
The four addresses are flushed out of the cache with four
clflush instructions at the beginning of each loop. Then
one mfence is used to ensure the data not in the cache before
executing the subsequent memory read instructions. We then
measure the execution times of these four read instructions
with rdtsc. Their execution time is all around 200 cycles,
which further confirms that all of the instructions (R1-R4)
can cause cache misses events.

while (offset not reach the end) {
clflush(basel+offset);
clflush(base2+offset);
clflush(base3+offset);
clflush(base4+offset);
mfence();

read8bytes(basel+offset); // R1
read8bytes(base2+offset); // R2
read8bytes(base3+offset); // R3
read8bytes(based4+offset); // R4

offset += 8;

Snippet 3: Code of L3 cache miss test

We then sample the code and find that it is still biased,
as shown in Figure 7. While it does not appear extremely
biased as in the previous events, the results are still very
significantly off and the rule still applies.

4 REMEDY

The main reason for the inaccuracy of PEBS is the shadow
effect. Events that appear in the shadow cannot be captured,
so the most intuitive solution to this problem is to keep the

On the Precision of Precise Event Based Sampling

" /. Rl R R2 XN/ R3 s R4
5 75% ,39k 168k 407k
ol

50%
§°) 7 7 7
€ 550 / 53k / 125k
SN0 N |
* o 2k /2k 6k 1k 6k

0% 10007 2347 991

Sampling Period

Figure 7: The sample proportion of L3 miss perfor-
mance event. For all sampling periods, R1 has a sig-
nificantly higher sampling proportion than that of the
other three instructions.

sample sample
shadow po'lnt shadow point
overflow arm¢ overflow arm i
Event 1 [nop nop | Event 2 | nop nop| Event 3
----------------------------- time --------------------oo---

Figure 8: Ensure that the PMU counter overflow
caused by the previous event must record the next
event by inserting enough nop instructions between
two adjacent events.

event out of the shadow, i.e., using other instructions to sep-
arate two adjacent events to be tracked. For example, we can
insert some unrelated instructions into two identical events
that are close together so that the interval time between
them is longer than the length of the shadow.

Take the experiment in Snippet 1 without the 1fence
instruction as an example. We keep inserting more nop in-
structions into the middle of two adjacent instructions until
the sampling results just become exactly accurate. We then
measure the total time required for instruction and the added
nop, which should be exactly just greater than or equal to
the length of the shadow.

When we add 43 nops to the end of each read instruction,
the sampling results, as shown in Figure 9(a), are still biased.
But when we add an extra nop, i.e., 44 nops after each read
instruction, the sampling becomes very accurate. As shown
in Figure 9(b).

For some of the PEBS performance events, we can add
some nop instructions to the end of each instruction that
may trigger a PMU counter overflow to achieve accurate
sampling at the instruction level.

5 EVALUATION

In this section, we repeat all the previous tests using the
method of adding nops The correctness of this method is

102

APSys 20, August 24-25, 2020, Tsukuba, Japan

W R4
109k

N/ R3

75% 1

50% 1

25%

Samples Percent

0%~

10007

2347
Sampling Period

(a) The sample proportion of memory reads events with 43
nop instructions added after every read instruction.

34k34k34k33k

3k 3k 3k 3k

14k14k14k14k

20%

10%

Samples Percent

0%-

Sampling Period

(b) The sample proportion of memory reads events with 44
nop instructions added after every read instruction.

Figure 9: The sampling ratio after inserting different
numbers of nop instructions after each read instruc-
tion in Snippet 1 without the 1fence instruction.

first verified and evaluated to see how many nop instruction
needed to be added for each performance event to ensure
accurate sampling. The overhead of the inserted nop instruc-
tions in the corresponding experiment is then given. All
results in this section are averages of five experiments to
reduce chance errors.

5.1 Evaluation Setup

Experiments are conducted on a server with two ten-core
Intel® Xeon® Gold 5215M CPUs. The server is equipped with
375GB DDR4 DRAM distributed on two NUMA nodes. The
version of Linux and perf is 5.3.11.

5.2 Accuracy

First, we add some nop instructions to the end of each read
instruction in Snippet 1 to see if we can get sufficiently accu-
rate sampling results. When we add 42 nops, the sampling
results are shown in Figure 10(a), with almost no samples
falling on R2, very few on R4, and more than half on R3.
After adding 43 nops, the sampling results become accurate,
as shown in Figure 10(b), no matter what sampling period
we choose. The percentage of samples for each of the four
read instructions is around 25%. The total execution time

APSys 20, August 24-25, 2020, Tsukuba, Japan

/. Rl EEE R2 N/ R3 S R4
= 102k
Q 75%
E 8k 34k
n 50%
()
a
E 25%
(7]
E:3 994

0%-

10007 2347

Sampling Period

(a) The sample proportion of memory reads events with 42
nop instructions added after every read instruction.

3k 3k 3k 3¢

14k 14k 14k 14k 34k 33k 35K 34k

N
o
R

Samples Percent
=
o
R

0%-

Sampling Period

(b) The sample proportion of memory reads events with 43
nop instructions added after every read instruction.

Figure 10: The sampling ratio after inserting different
numbers of nop instructions after each read instruc-
tion in Snippet 1.

of one read and 43 nops measured by rdtsc is about 8-10
cycles.

The result of the branch instructions is shown in Fig-
ure 11. When we insert 45 nop instructions into the middle
of two branches, the sampling results are still very biased
(Figure 11(a)). But when the number of nop instructions
reaches 46, the results become very accurate, as shown in
Figure 11(b). The cycles required for a branch instruction plus
46 nop instructions measured by rdtsc is about 10, which
suggests that the length of the shadow of the branching event
is around 10 cycles.

Figure 12 shows the result for the L3 cache miss events
in Snippet 3. Surprisingly, for the longer cache miss instruc-
tions, the number of nop instructions required to ensure
accurate sampling results is also greater. 220 nop instruc-
tions cannot guarantee accurate sampling results, and the
sampling results obtained from different sampling periods
have large deviations (Figure 12(a)). But 221 nop instructions
can ensure accurate sampling results at any sampling period
(not coincident with pattern of the workload) (Figure 12(b)).

The number cycles required for one cache miss instruction
and 221 nop instructions is about 240, which shows that
the shadow of the cache miss events is inherently longer
than other instructions in PEBS. These results show that

103

J. Yi, B. Dong, M. Dong, H. Chen

< / Brl s Br2 2 Br3

£100%1 39k 160k
o
&
u k
L 50%; =
% 101k 102k
n /7
H* 0% ok 1k 4k 7k /

° 10007 2347 991

Sampling Period

(a) The sample proportion of branching events with 45 nop
instructions added after every branch.

13k 13k 13k 57k 57k 57k 135k 135k 135k

10007 2347 991
Sampling Period

w
o
LS

20%

Samples Percent
=
o
R

0%

(b) The sample proportion of branching events with 46 nop
instructions added after every branch.

Figure 11: The sampling results after inserting differ-
ent nop instructions in Snippet 2.

the shadow lengths of different PEBS performance events
are inconsistent. For many PEBS performance events, the
remedy by inserting nop instructions is able to solve the
PEBS sampling bias problem.

5.3 Overhead

This approach has the obvious drawback of incurring the
additional overhead associated with the code belonging to
the tracked event related to the percentage of instructions.
Below we test how much performance overhead the method
incurs by adding nop instructions after each instruction.

In this part, we first measure the execution time of codes
from Snippet 1 to Snippet 3 separately. Then we insert enough
nop instructions in the same way as previous that ensure
accurate sampling of PEBS and measure its running time
again. The difference between the two execution times is the
additional performance overhead of our approach, as shown
in Table 1.

For the previous tests, the performance overhead caused
by the nop instructions is around 33%-222%. Since not every
instruction in the actual scenario can trigger the event to be
tracked, it is not necessary to insert nop instructions after
every instruction. So the cost in the actual scenario should
be lower than the overhead in our experiments. Simultane-
ously, the sampling technique is typically used to analyze

On the Precision of Precise Event Based Sampling

R1 KX R3

R2 NN R4

182k
16k 16k 168Kk 176K

73k 72k

Sampling Period

(a) The sample proportion of L3 cache miss events with 220
nop instructions added after every read instruction.

13k 13k 13k 13k 134k135k135k137k

57k 57k 57k 57k
2

20%

10%

Samples Percent

0%-

Sampling Period
(b) The sample proportion of L3 cache miss events with 221
nop instructions added after every read instruction.

Figure 12: The sampling results after inserting differ-
ent nop instructions in Snippet 3.

Table 1: Execution time before and after inserting
enough nop instructions on Intel® Xeon® Gold 5215M
Processors.

Code in the main loop Overhead
Ifence — 4 reads (Snippet 1) 134%
4 reads (Snippet 1 without Ifence) 222%
3 branches (Snippet 2) 130%

4 clflush — mfence — 4 reads (Snippet 3) 33%

and optimize program performance and is not used in the
production environment; this overhead is acceptable.

5.4 Experiment Results on Other
Platforms

We repeat all the above experiments on two other platforms.
The first has two twenty-core Intel® Xeon® Gold 6138 CPUs
and 188GB DDR4 DRAM on two NUMA nodes. The version
of Linux kernel and perf is 4.19.32.

The second has a six-core Intel® Core™ i7-8700 processor
and 32GB DDR4 DRAM on one NUMA node. The version of
kernel and perf is 5.2.5.

The results of PEBS sampling also suffer from the same
bias problem, which can be fixed when we insert enough
nop instructions after each instruction that may trigger an

104

APSys 20, August 24-25, 2020, Tsukuba, Japan

Table 2: The minimal number of nop instructions to be
inserted after each event to ensure proper sampling
on Intel® Xeon® Gold 6138 and Intel® Core™ i7-8700
Processors.

PEBS Performance Event Gold 6138 i7-8700
mem_inst_retired.all_loads

(Snippet 1) 43 43
mem_inst_retired.all loads 44 44
(Snippet 1 without lfence)
br_‘mst_retlred.all_branches_pebs 46 46
(Snippet 2)

mer.n_load_retlred.B_mlss 291 991
(Snippet 3)

Table 3: The overhead of inserting enough nop in-
structions for different performance events on Intel®
Xeon® Gold 6138 and Intel® Core™ i7-8700 Processors.

Code in the main loop Gold 6138i7-8700

Ifence — 4 reads (Snippet 1) 131% 146%
4 reads (Snippet 1 without Ifence) 231% 242%
3 branches (Snippet 2) 139% 123%
4 clflush — mfence — 4 reads (Snippet 3) 58% 127%

event, as shown in Table 2. The corresponding overheads
introduced by these nop instructions are shown in Table 3.

To ensure all the performance events aforementioned in
the same code to be sampled accurately, the number of nop
instructions to be inserted remain the same across platforms.
This indicates that the shadow length of some performance
events may be the same on different hardware platforms. But
before we use PEBS on a new hardware platform, we should
still measure how many nop instructions need to be inserted
in order to make it really “precise”.

6 CONCLUSION

The sampling results of the Precise Event Based Sampling
(PEBS) are not precise. This paper makes a systematic study
on the precision of PEBS and finds the sampling bias rule of
PEBS. We then present how to remedy such imprecision by
inserting nop instructions. Evaluation shows that the remedy
can make PEBS produce real “precise” sampling results with
acceptable overhead.

ACKNOWLEDGMENTS

We sincerely thank the anonymous reviewers for the con-
structive comments and suggestions. This work is supported
in part by China National Natural Science Foundation (No.
61925206). Haibo Chen (haibochen@sjtu.edu.cn) is the cor-
responding author.

APSys 20, August 24-25, 2020, Tsukuba, Japan

REFERENCES

[1] 2019. perf - Performance analysis tools for Linux. https://man7.org/l

[2

[10

(11

[12

(13

(14

(15

[16

(17

]

—_

—

—

]

—

—

]

flan?

]

]

—

inux/man-pages/man1/perf.1.html.

Soramichi Akiyama and Takahiro Hirofuchi. 2017. Quantitative eval-
uation of intel pebs overhead for online system-noise analysis. In
Proceedings of the 7th International Workshop on Runtime and Operat-
ing Systems for Supercomputers ROSS 2017. 1-8.

Dehao Chen, Neil Vachharajani, Robert Hundt, Shih-wei Liao, Vinodha
Ramasamy, Paul Yuan, Wenguang Chen, and Weimin Zheng. 2010.
Taming hardware event samples for FDO compilation. In Proceedings of
the 8th annual IEEE/ACM international symposium on Code generation
and optimization. 42-52.

William E Cohen. 2004. Tuning programs with OProfile. Wide Open
Magazine 1 (2004), 53-62.

Arnaldo Carvalho De Melo. 2010. The new linux ‘perf” tools. In Slides
from Linux Kongress, Vol. 18. 1-42.

Jake Edge. 2009. Perfcounters added to the mainline. https://lwn.net/
Articles/339361/.

Alfredo Giménez, Todd Gamblin, Barry Rountree, Abhinav Bhatele,
Ilir Jusufi, Peer-Timo Bremer, and Bernd Hamann. 2014. Dissecting
on-node memory access performance: a semantic approach. In SC’14:
Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis. IEEE, 166-176.

Intel. 2016. Intel 64 and IA-32 Architectures Software Developer’s
Manual. https://www.intel.com/content/www/us/en/architecture-and
-technology/64-ia-32-architectures-software-developer-vol-3b-part-
2-manualhtml. Volume 3B: System Programming Guide, Part 2 (2016).
Intel. 2020. Intel® VTune™ Profiler. https://software.intel.com/conte
nt/www/us/en/develop/tools/vtune-profiler. html.

David Levinthal. 2009. Performance analysis guide for intel core i7
processor and intel xeon 5500 processors. Intel Performance Analysis
Guide 30 (2009), 18.

Andrzej Nowak, Ahmad Yasin, Avi Mendelson, and Willy Zwaenepoel.
2015. Establishing a base of trust with performance counters for
enterprise workloads. In 2015 USENIX Annual Technical Conference
(USENIX ATC 15). 541-548.

Gabriele Paoloni. 2010. How to benchmark code execution times on
Intel IA-32 and IA-64 instruction set architectures. Intel Corporation
123 (2010).

Sam Silvestro, Hongyu Liu, Tong Zhang, Changhee Jung, Dongyoon
Lee, and Tongping Liu. 2018. Sampler: Pmu-based sampling to de-
tect memory errors latent in production software. In 2018 51st An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 231-244.

Vincent M Weaver. 2016. Advanced hardware profiling and sampling
(PEBS, IBS, etc.): creating a new PAPI sampling interface. Technical
Report. Tech. rep., University of Maine.

V. M. Weaver, D. Terpstra, and S. Moore. 2013. Non-determinism and
overcount on modern hardware performance counter implementa-
tions. In 2013 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS). 215-224.

Hao Xu, Qingsen Wang, Shuang Song, Lizy Kurian John, and Xu Liu.
2019. Can We Trust Profiling Results? Understanding and Fixing the
Inaccuracy in Modern Profilers. In Proceedings of the ACM International
Conference on Supercomputing (ICS °19). Association for Computing
Machinery, New York, NY, USA, 284-295. https://doi.org/10.1145/33
30345.3330371

Liwei Yuan, Weichao Xing, Haibo Chen, and Binyu Zang. 2011. Security
breaches as PMU deviation: detecting and identifying security attacks
using performance counters. In Proceedings of the Second Asia-Pacific
Workshop on Systems. 1-5.

105

J. Yi, B. Dong, M. Dong, H. Chen

https://man7.org/linux/man-pages/man1/perf.1.html
https://man7.org/linux/man-pages/man1/perf.1.html
https://lwn.net/Articles/339361/
https://lwn.net/Articles/339361/
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.html
https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html
https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html
https://doi.org/10.1145/3330345.3330371
https://doi.org/10.1145/3330345.3330371

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 PMU and PEBS
	2.2 Perf
	2.3 Imprecision of PEBS Sampling Results

	3 Diving into the shadow
	4 Remedy
	5 Evaluation
	5.1 Evaluation Setup
	5.2 Accuracy
	5.3 Overhead
	5.4 Experiment Results on Other Platforms

	6 Conclusion
	Acknowledgments
	References

